Tag Archives: Manipulation

Review of RL applied to robotic manipulation

��igo Elguea-Aguinaco, Antonio Serrano-Mu�oz, Dimitrios Chrysostomou, Ibai Inziarte-Hidalgo, Simon B�gh, Nestor Arana-Arexolaleiba, A review on reinforcement learning for contact-rich robotic manipulation tasks, Robotics and Computer-Integrated Manufacturing, Volume 81, 2023 DOI: 10.1016/j.rcim.2022.102517.

Research and application of reinforcement learning in robotics for contact-rich manipulation tasks have exploded in recent years. Its ability to cope with unstructured environments and accomplish hard-to-engineer behaviors has led reinforcement learning agents to be increasingly applied in real-life scenarios. However, there is still a long way ahead for reinforcement learning to become a core element in industrial applications. This paper examines the landscape of reinforcement learning and reviews advances in its application in contact-rich tasks from 2017 to the present. The analysis investigates the main research for the most commonly selected tasks for testing reinforcement learning algorithms in both rigid and deformable object manipulation. Additionally, the trends around reinforcement learning associated with serial manipulators are explored as well as the various technological challenges that this machine learning control technique currently presents. Lastly, based on the state-of-the-art and the commonalities among the studies, a framework relating the main concepts of reinforcement learning in contact-rich manipulation tasks is proposed. The final goal of this review is to support the robotics community in future development of systems commanded by reinforcement learning, discuss the main challenges of this technology and suggest future research directions in the domain.

Considering the robot and all the intermmediate objects that participate in the manipulation of another object as a MDP

Yilun Zhou, Benjamin Burchfiel, George Konidaris, Representing, learning, and controlling complex object interactions, Autonomous Robots, Volume 42, Issue 7, pp 1355–1367, DOI: 10.1007/s1051.

We present a framework for representing scenarios with complex object interactions, where a robot cannot directly interact with the object it wishes to control and must instead influence it via intermediate objects. For instance, a robot learning to drive a car can only change the car’s pose indirectly via the steering wheel, and must represent and reason about the relationship between its own grippers and the steering wheel, and the relationship between the steering wheel and the car. We formalize these interactions as chains and graphs of Markov decision processes (MDPs) and show how such models can be learned from data. We also consider how they can be controlled given known or learned dynamics. We show that our complex model can be collapsed into a single MDP and solved to find an optimal policy for the combined system. Since the resulting MDP may be very large, we also introduce a planning algorithm that efficiently produces a potentially suboptimal policy. We apply these models to two systems in which a robot uses learning from demonstration to achieve indirect control: playing a computer game using a joystick, and using a hot water dispenser to heat a cup of water.

Extending STRIPS-like symbolic planners with metrical/physical constraints for the domain of robotic manipulation

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling, FFRob: Leveraging symbolic planning for efficient task and motion planning, The International Journal of Robotics Research Vol 37, Issue 1, pp. 104 – 136, DOI: 10.1177/0278364917739114

Mobile manipulation problems involving many objects are challenging to solve due to the high dimensionality and multi-modality of their hybrid configuration spaces. Planners that perform a purely geometric search are prohibitively slow for solving these problems because they are unable to factor the configuration space. Symbolic task planners can efficiently construct plans involving many variables but cannot represent the geometric and kinematic constraints required in manipulation. We present the FFRob algorithm for solving task and motion planning problems. First, we introduce extended action specification (EAS) as a general purpose planning representation that supports arbitrary predicates as conditions. We adapt existing heuristic search ideas for solving strips planning problems, particularly delete-relaxations, to solve EAS problem instances. We then apply the EAS representation and planners to manipulation problems resulting in FFRob. FFRob iteratively discretizes task and motion planning problems using batch sampling of manipulation primitives and a multi-query roadmap structure that can be conditionalized to evaluate reachability under different placements of movable objects. This structure enables the EAS planner to efficiently compute heuristics that incorporate geometric and kinematic planning constraints to give a tight estimate of the distance to the goal. Additionally, we show FFRob is probabilistically complete and has a finite expected runtime. Finally, we empirically demonstrate FFRob’s effectiveness on complex and diverse task and motion planning tasks including rearrangement planning and navigation among movable objects.

Developmental approach for a robot manipulator that learns in several bootstrapped stages, strongly inspired in infant development

Ugur, E.; Nagai, Y.; Sahin, E.; Oztop, E., Staged Development of Robot Skills: Behavior Formation, Affordance Learning and Imitation with Motionese, Autonomous Mental Development, IEEE Transactions on , vol.7, no.2, pp.119,139, June 2015, DOI: 10.1109/TAMD.2015.2426192.

Inspired by infant development, we propose a three staged developmental framework for an anthropomorphic robot manipulator. In the first stage, the robot is initialized with a basic reach-and- enclose-on-contact movement capability, and discovers a set of behavior primitives by exploring its movement parameter space. In the next stage, the robot exercises the discovered behaviors on different objects, and learns the caused effects; effectively building a library of affordances and associated predictors. Finally, in the third stage, the learned structures and predictors are used to bootstrap complex imitation and action learning with the help of a cooperative tutor. The main contribution of this paper is the realization of an integrated developmental system where the structures emerging from the sensorimotor experience of an interacting real robot are used as the sole building blocks of the subsequent stages that generate increasingly more complex cognitive capabilities. The proposed framework includes a number of common features with infant sensorimotor development. Furthermore, the findings obtained from the self-exploration and motionese guided human-robot interaction experiments allow us to reason about the underlying mechanisms of simple-to-complex sensorimotor skill progression in human infants.

Example of application of bayesian network learning and inference to robotics, and a brief but useful related work on learning by imitation

Dan Song; Ek, C.H.; Huebner, K.; Kragic, D., Task-Based Robot Grasp Planning Using Probabilistic Inference, Robotics, IEEE Transactions on , vol.31, no.3, pp.546,561, June 2015, DOI: 10.1109/TRO.2015.2409912.

Grasping and manipulating everyday objects in a goal-directed manner is an important ability of a service robot. The robot needs to reason about task requirements and ground these in the sensorimotor information. Grasping and interaction with objects are challenging in real-world scenarios, where sensorimotor uncertainty is prevalent. This paper presents a probabilistic framework for the representation and modeling of robot-grasping tasks. The framework consists of Gaussian mixture models for generic data discretization, and discrete Bayesian networks for encoding the probabilistic relations among various task-relevant variables, including object and action features as well as task constraints. We evaluate the framework using a grasp database generated in a simulated environment including a human and two robot hand models. The generative modeling approach allows the prediction of grasping tasks given uncertain sensory data, as well as object and grasp selection in a task-oriented manner. Furthermore, the graphical model framework provides insights into dependencies between variables and features relevant for object grasping.

Reinforcement learning used for an adaptive attention mechanism, and integrated in an architecture with both top-down and bottom-up vision processing

Ognibene, D.; Baldassare, G., Ecological Active Vision: Four Bioinspired Principles to Integrate Bottom–Up and Adaptive Top–Down Attention Tested With a Simple Camera-Arm Robot, Autonomous Mental Development, IEEE Transactions on , vol.7, no.1, pp.3,25, March 2015. DOI: 10.1109/TAMD.2014.2341351.

Vision gives primates a wealth of information useful to manipulate the environment, but at the same time it can easily overwhelm their computational resources. Active vision is a key solution found by nature to solve this problem: a limited fovea actively displaced in space to collect only relevant information. Here we highlight that in ecological conditions this solution encounters four problems: 1) the agent needs to learn where to look based on its goals; 2) manipulation causes learning feedback in areas of space possibly outside the attention focus; 3) good visual actions are needed to guide manipulation actions, but only these can generate learning feedback; and 4) a limited fovea causes aliasing problems. We then propose a computational architecture (“BITPIC”) to overcome the four problems, integrating four bioinspired key ingredients: 1) reinforcement-learning fovea-based top-down attention; 2) a strong vision-manipulation coupling; 3) bottom-up periphery-based attention; and 4) a novel action-oriented memory. The system is tested with a simple simulated camera-arm robot solving a class of search-and-reach tasks involving color-blob “objects.” The results show that the architecture solves the problems, and hence the tasks, very efficiently, and highlight how the architecture principles can contribute to a full exploitation of the advantages of active vision in ecological conditions.