Author Archives: Juan-antonio Fernández-madrigal

A new theory: we are curious about tasks that increase our ability to solve as many future tasks as possible

Franziska Brändle, Charley M. Wu, Eric Schulz, What Are We Curious about?, . Trends in Cognitive Sciences, Volume 24, Issue 9, 2020 DOI: 10.1016/j.tics.2020.05.010.

(no abstract).

Predicting optimistically seems to lead to better response of the agent to achieve the best goals

Zekun Sun, Chaz Firestone, Optimism and Pessimism in the Predictive Brain, . Trends in Cognitive Sciences, Volume 24, Issue 9, 2020 DOI: 10.1016/j.tics.2020.06.001.

(no abstract).

Combination of RL with human provided models for navigation

Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, Danilo Romano, Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving, . Robotics and Autonomous Systems, Volume 131, 2020 DOI: 10.1016/j.robot.2020.103568.

The design of high-level decision-making systems is a topical problem in the field of autonomous driving. In this paper, we combine traditional rule-based strategies and reinforcement learning (RL) with the goal of achieving transparency and robustness. On the one hand, the use of handcrafted rule-based controllers allows for transparency, i.e., it is always possible to determine why a given decision was made, but they struggle to scale to complex driving scenarios, in which several objectives need to be considered. On the other hand, black-box RL approaches enable us to deal with more complex scenarios, but they are usually hardly interpretable. In this paper, we combine the best properties of these two worlds by designing parametric rule-based controllers, in which interpretable rules can be provided by domain experts and their parameters are learned via RL. After illustrating how to apply parameter-based RL methods (PGPE) to this setting, we present extensive numerical simulations in the highway and in two urban scenarios: intersection and roundabout. For each scenario, we show the formalization as an RL problem and we discuss the results of our approach in comparison with handcrafted rule-based controllers and black-box RL techniques.

Fast and more exact triangulation method for robot localization using range measurements

Pınar Oğuz-Ekim, Lambiotte R., Lefebvre E., TDOA based localization and its application to the initialization of LiDAR based autonomous robots, . Robotics and Autonomous Systems, Volume 131, 2020, DOI: 10.1016/j.robot.2020.103590.

This work considers the problem of locating a single robot given a set of squared noisy range difference measurements to a set of points (anchors) whose positions are known. In the sequel, localization problem is solved in the Least-Squares (LS) sense by writing the robot position in polar/spherical coordinates. This representation transforms the original nonconvex/multimodal cost function into the quotient of two quadratic forms, whose constrained maximization is more tractable than the original problem. Simulation results indicate that the proposed method has similar accuracy to state-of-the-art optimization-based localization algorithms in its class, and the simple algorithmic structure and computational efficiency makes it appealing for applications with strong computational constraints. Additionally, location information is used to find the initial orientation of the robot with respect to the previously obtained map in scan matching. Thus, the crucial problem of the autonomous initialization and localization in robotics is solved.

A fast method to cluster networks that include both randomness and structure, with a nice summary of existing clustering algorithms

Blondel V.D., Guillaume J.-L., Lambiotte R., Lefebvre E., Fast unfolding of communities in large networks, . Stat. Mech. Theory Exp., 2008 (10) (2008), Article P10008, DOI: 10.1088/1742-5468/2008/10/P10008.

We propose a simple method to extract the community structure of large networks. Our method is a heuristic method that is based on modularity optimization. It is shown to outperform all other known community detection methods in terms of computation time. Moreover, the quality of the communities detected is very good, as measured by the so-called modularity. This is shown first by identifying language communities in a Belgian mobile phone network of 2 million customers and by analysing a web graph of 118 million nodes and more than one billion links. The accuracy of our algorithm is also verified on ad hoc modular networks.

Towards the emergence of obstacle avoidance through collisions

Qian F, Koditschek DE., An obstacle disturbance selection framework: emergent robot steady states under repeated collisions, The International Journal of Robotics Research. 2020;39(13):1549-1566, DOI: 10.1177/0278364920935514.

Natural environments are often filled with obstacles and disturbances. Traditional navigation and planning approaches normally depend on finding a traversable “free space” for robots to avoid unexpected contact or collision. We hypothesize that with a better understanding of the robot–obstacle interactions, these collisions and disturbances can be exploited as opportunities to improve robot locomotion in complex environments. In this article, we propose a novel obstacle disturbance selection (ODS) framework with the aim of allowing robots to actively select disturbances to achieve environment-aided locomotion. Using an empirically characterized relationship between leg–obstacle contact position and robot trajectory deviation, we simplify the representation of the obstacle-filled physical environment to a horizontal-plane disturbance force field. We then treat each robot leg as a “disturbance force selector” for prediction of obstacle-modulated robot dynamics. Combining the two representations provides analytical insights into the effects of gaits on legged traversal in cluttered environments. We illustrate the predictive power of the ODS framework by studying the horizontal-plane dynamics of a quadrupedal robot traversing an array of evenly-spaced cylindrical obstacles with both bounding and trotting gaits. Experiments corroborate numerical simulations that reveal the emergence of a stable equilibrium orientation in the face of repeated obstacle disturbances. The ODS reduction yields closed-form analytical predictions of the equilibrium position for different robot body aspect ratios, gait patterns, and obstacle spacings. We conclude with speculative remarks bearing on the prospects for novel ODS-based gait control schemes for shaping robot navigation in perturbation-rich environments.

A new contribution along the DESPOT line focused on hybrid CPU+GPU platforms

Cai P, Luo Y, Hsu D, Lee WS., HyP-DESPOT: A hybrid parallel algorithm for online planning under uncertainty, The International Journal of Robotics Research. 2021;40(2-3):558-573, DOI: 10.1177/0278364920937074.

Robust planning under uncertainty is critical for robots in uncertain, dynamic environments, but incurs high computational cost. State-of-the-art online search algorithms, such as DESPOT, have vastly improved the computational efficiency of planning under uncertainty and made it a valuable tool for robotics in practice. This work takes one step further by leveraging both CPU and GPU parallelization in order to achieve real-time online planning performance for complex tasks with large state, action, and observation spaces. Specifically, Hybrid Parallel DESPOT (HyP-DESPOT) is a massively parallel online planning algorithm that integrates CPU and GPU parallelism in a multi-level scheme. It performs parallel DESPOT tree search by simultaneously traversing multiple independent paths using multi-core CPUs; it performs parallel Monte Carlo simulations at the leaf nodes of the search tree using GPUs. HyP-DESPOT provably converges in finite time under moderate conditions and guarantees near-optimality of the solution. Experimental results show that HyP-DESPOT speeds up online planning by up to a factor of several hundred in several challenging robotic tasks in simulation, compared with the original DESPOT algorithm. It also exhibits real-time performance on a robot vehicle navigating among many pedestrians.

Abstraction of controllers

Stanley W. Smith, Murat Arcak, Majid Zamani, Approximate abstractions of control systems with an application to aggregation, Automatica, 119 (2020) DOI: 10.1016/j.automatica.2020.109065.

Previous approaches to constructing abstractions for control systems rely on geometric conditions or, in the case of an interconnected control system, a condition on the interconnection topology. Since these conditions are not always satisfiable, we relax the restrictions on the choice of abstractions, instead opting to select ones which nearly satisfy such conditions via optimization-based approaches. To quantify the resulting effect on the error between the abstraction and concrete control system, we introduce the notions of practical simulation functions and practical storage functions. We show that our approach facilitates the procedure of aggregation, where one creates an abstraction by partitioning agents into aggregate areas. We demonstrate the results on an application where we regulate the temperature in three separate zones of a building.

Hybrid Monte Carlo + Interval-based localization

Weiss, R., Glösekötter, P., Prestes, E. et al., Hybridisation of Sequential Monte Carlo Simulation with Non-linear Bounded-error State Estimation Applied to Global Localisation of Mobile Robots, J Intell Robot Syst 99, 335–357 (2020) DOI: 10.1007/s10846-019-01118-7.

Accurate self-localisation is a fundamental ability of any mobile robot. In Monte Carlo localisation, a probability distribution over a space of possible hypotheses accommodates the inherent uncertainty in the position estimate, whereas bounded-error localisation provides a region that is guaranteed to contain the robot. However, this guarantee is accompanied by a constant probability over the confined region and therefore the information yield may not be sufficient for certain practical applications. Four hybrid localisation algorithms are proposed, combining probabilistic filtering with non-linear bounded-error state estimation based on interval analysis. A forward-backward contractor and the Set Inverter via Interval Analysis are hybridised with a bootstrap filter and an unscented particle filter, respectively. The four algorithms are applied to global localisation of an underwater robot, using simulated distance measurements to distinguishable landmarks. As opposed to previous hybrid methods found in the literature, the bounded-error state estimate is not maintained throughout the whole estimation process. Instead, it is only computed once in the beginning, when solving the wake-up robot problem, and after kidnapping of the robot, which drastically reduces the computational cost when compared to the existing algorithms. It is shown that the novel algorithms can solve the wake-up robot problem as well as the kidnapped robot problem more accurately than the two conventional probabilistic filters.

Simultaneous localization, mapping and semantic labelling in mobile robots

Taniguchi, Akira, Hagiwara, Yoshinobu, Taniguchi, Tadahiro, Inamura, Tetsunari, Improved and scalable online learning of spatial concepts and language models with mapping, Autonomous Robots 44(6), DOI: 10.1007/s10514-020-09905-0.

We propose a novel online learning algorithm, called SpCoSLAM 2.0, for spatial concepts and lexical acquisition with high accuracy and scalability. Previously, we proposed SpCoSLAM as an online learning algorithm based on unsupervised Bayesian probabilistic model that integrates multimodal place categorization, lexical acquisition, and SLAM. However, our original algorithm had limited estimation accuracy owing to the influence of the early stages of learning, and increased computational complexity with added training data. Therefore, we introduce techniques such as fixed-lag rejuvenation to reduce the calculation time while maintaining an accuracy higher than that of the original algorithm. The results show that, in terms of estimation accuracy, the proposed algorithm exceeds the original algorithm and is comparable to batch learning. In addition, the calculation time of the proposed algorithm does not depend on the amount of training data and becomes constant for each step of the scalable algorithm. Our approach will contribute to the realization of long-term spatial language interactions between humans and robots.