Tag Archives: Stochastic Optimal Control

Using a physical simulator for sampled rollouts in stochastic optimal control

Carius J, Ranftl R, Farshidian F, Hutter M. Constrained stochastic optimal control with learned importance sampling: A path integral approach, The International Journal of Robotics Research. 2022;41(2):189-209, DOI: 10.1177/02783649211047890.

Modern robotic systems are expected to operate robustly in partially unknown environments. This article proposes an algorithm capable of controlling a wide range of high-dimensional robotic systems in such challenging scenarios. Our method is based on the path integral formulation of stochastic optimal control, which we extend with constraint-handling capabilities. Under our control law, the optimal input is inferred from a set of stochastic rollouts of the system dynamics. These rollouts are simulated by a physics engine, placing minimal restrictions on the types of systems and environments that can be modeled. Although sampling-based algorithms are typically not suitable for online control, we demonstrate in this work how importance sampling and constraints can be used to effectively curb the sampling complexity and enable real-time control applications. Furthermore, the path integral framework provides a natural way of incorporating existing control architectures as ancillary controllers for shaping the sampling distribution. Our results reveal that even in cases where the ancillary controller would fail, our stochastic control algorithm provides an additional safety and robustness layer. Moreover, in the absence of an existing ancillary controller, our method can be used to train a parametrized importance sampling policy using data from the stochastic rollouts. The algorithm may thereby bootstrap itself by learning an importance sampling policy offline and then refining it to unseen environments during online control. We validate our results on three robotic systems, including hardware experiments on a quadrupedal robot.

A novel method for compacting a continuous high-dimensional value function for MDPs

Gorodetsky, A., Karaman, S., & Marzouk, Y., High-dimensional stochastic optimal control using continuous tensor decompositions, The International Journal of Robotics Research, 37(2–3), 340–377, DOI: 10.1177/0278364917753994.

Motion planning and control problems are embedded and essential in almost all robotics applications. These problems are often formulated as stochastic optimal control problems and solved using dynamic programming algorithms. Unfortunately, most existing algorithms that guarantee convergence to optimal solutions suffer from the curse of dimensionality: the run time of the algorithm grows exponentially with the dimension of the state space of the system. We propose novel dynamic programming algorithms that alleviate the curse of dimensionality in problems that exhibit certain low-rank structure. The proposed algorithms are based on continuous tensor decompositions recently developed by the authors. Essentially, the algorithms represent high-dimensional functions (e.g. the value function) in a compressed format, and directly perform dynamic programming computations (e.g. value iteration, policy iteration) in this format. Under certain technical assumptions, the new algorithms guarantee convergence towards optimal solutions with arbitrary precision. Furthermore, the run times of the new algorithms scale polynomially with the state dimension and polynomially with the ranks of the value function. This approach realizes substantial computational savings in “compressible” problem instances, where value functions admit low-rank approximations. We demonstrate the new algorithms in a wide range of problems, including a simulated six-dimensional agile quadcopter maneuvering example and a seven-dimensional aircraft perching example. In some of these examples, we estimate computational savings of up to 10 orders of magnitude over standard value iteration algorithms. We further demonstrate the algorithms running in real time on board a quadcopter during a flight experiment under motion capture.

A novel method of mathematical compression of the value function for polynomial (in the state) time complexity of value iteration / policy iteration

Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk, High-dimensional stochastic optimal control using continuous tensor decompositions, The International Journal of Robotics Research Vol 37, Issue 2-3, pp. 340 – 377, DOI: 10.1177/0278364917753994.

Motion planning and control problems are embedded and essential in almost all robotics applications. These problems are often formulated as stochastic optimal control problems and solved using dynamic programming algorithms. Unfortunately, most existing algorithms that guarantee convergence to optimal solutions suffer from the curse of dimensionality: the run time of the algorithm grows exponentially with the dimension of the state space of the system. We propose novel dynamic programming algorithms that alleviate the curse of dimensionality in problems that exhibit certain low-rank structure. The proposed algorithms are based on continuous tensor decompositions recently developed by the authors. Essentially, the algorithms represent high-dimensional functions (e.g. the value function) in a compressed format, and directly perform dynamic programming computations (e.g. value iteration, policy iteration) in this format. Under certain technical assumptions, the new algorithms guarantee convergence towards optimal solutions with arbitrary precision. Furthermore, the run times of the new algorithms scale polynomially with the state dimension and polynomially with the ranks of the value function. This approach realizes substantial computational savings in “compressible” problem instances, where value functions admit low-rank approximations. We demonstrate the new algorithms in a wide range of problems, including a simulated six-dimensional agile quadcopter maneuvering example and a seven-dimensional aircraft perching example. In some of these examples, we estimate computational savings of up to 10 orders of magnitude over standard value iteration algorithms. We further demonstrate the algorithms running in real time on board a quadcopter during a flight experiment under motion capture.