Tag Archives: Qualitative Relational Maps

Qualitative maps for mobile robots

Jennifer Padgett, Mark Campbell, Probabilistic qualitative mapping for robots, Robotics and Autonomous Systems, Volume 98, 2017, Pages 292-306, DOI: 10.1016/j.robot.2017.09.013.

A probabilistic qualitative relational mapping (PQRM) algorithm is developed to enable robots to robustly map environments using noisy sensor measurements. Qualitative state representations provide soft, relative map information which is robust to metrical errors. In this paper, probabilistic distributions over qualitative states are derived and an algorithm to update the map recursively is developed. Maps are evaluated for convergence and correctness in Monte Carlo simulations. Validation tests are conducted on the New College dataset to evaluate map performance in realistic environments.

Mapping (and navitating in) outdoor unstructured environments with low-cost and few sensors, using relations between landmarks instead of absolute or metrical positions

Mark McClelland, Mark Campbell, Tara Estlin, Qualitative relational mapping and navigation for planetary rovers, Robotics and Autonomous Systems, Volume 83, 2016, Pages 73-86, ISSN 0921-8890, DOI: j.robot.2016.05.017.

This paper presents a novel method for qualitative mapping of large scale spaces which decouples the mapping problem from that of position estimation. The proposed framework makes use of a graphical representation of the world in order to build a map consisting of qualitative constraints on the geometric relationships between landmark triplets. This process allows a mobile robot to extract information about landmark positions using a set of minimal sensors in the absence of GPS. A novel measurement method based on camera imagery is presented which extends previous work from the field of Qualitative Spatial Reasoning. A Branch-and-Bound approach is taken to solve a set of non-convex feasibility problems required for generating off-line operator lookup tables and on-line measurements, which are fused into the map using an iterative graph update. A navigation approach for travel between distant landmarks is developed, using estimates of the Relative Neighborhood Graph extracted from the qualitative map in order to generate a sequence of landmark objectives based on proximity. Average and asymptotic performance of the mapping algorithm is evaluated using Monte Carlo tests on randomly generated maps, and a data-driven simulation is presented for a robot traversing the Jet Propulsion Laboratory Mars Yard while building a relational map. These results demonstrate that the system can be effectively used to build a map sufficiently complete and accurate for long-distance navigation as well as other applications.