Tag Archives: Cognitive Information

On the limited throughput of the human cognition and its implications, e.g., in Engineering

Jieyu Zheng1, and Markus Meister, The unbearable slowness of being: Why do we live at 10 bits/s?, Neuron (2024), DOI: 10.1016/j.neuron.2024.11.008.

This article is about the neural conundrum behind the slowness of human behavior. The information throughput of a human being is about 10 bits/s. In comparison, our sensory systems gather data at 10 bits/s. The stark contrast between these numbers remains unexplained and touches on fundamental aspects of brain function: what neural substrate sets this speed limit on the pace of our existence? Why does the brain need billions of neurons to process 10 bits/s? Why can we only think about one thing at a time? The brain seems to operate in two distinct modes: the ‘‘outer’’ brain handles fast high-dimensional sensory and motor signals, whereas the ‘‘inner’’ brain processes the reduced few bits needed to control behavior. Plausible explanations exist for the large neuron numbers in the outer brain, but not for the inner brain, and we propose new research directions to remedy this.

Z-numbers: an extension of fuzzy variables for cognitive decision making, and the concept of cognitive information

Hong-gang Peng, Jian-qiang Wang, Outranking Decision-Making Method with Z-Number Cognitive Information, Cognitive Computation, Volume 10, Issue 5, pp 752–768, DOI: 10.1007/s12559-018-9556-y.

The Z-number provides an adequate and reliable description of cognitive information. The nature of Z-numbers is complex, however, and important issues in Z-number computation remain to be addressed. This study focuses on developing a computationally simple method with Z-numbers to address multicriteria decision-making (MCDM) problems. Processing Z-numbers requires the direct computation of fuzzy and probabilistic uncertainties. We used an effective method to analyze the Z-number construct. Next, we proposed some outranking relations of Z-numbers and defined the dominance degree of discrete Z-numbers. Also, after analyzing the characteristics of elimination and choice translating reality III (ELECTRE III) and qualitative flexible multiple criteria method (QUALIFLEX), we developed an improved outranking method. To demonstrate this method, we provided an illustrative example concerning job-satisfaction evaluation. We further verified the validity of the method by a criteria test and comparative analysis. The results demonstrate that the method can be successfully applied to real-world decision-making problems, and it can identify more reasonable outcomes than previous methods. This study overcomes the high computational complexity in existing Z-number computation frameworks by exploring the pairwise comparison of Z-numbers. The method inherits the merits of the classical outranking method and considers the non-compensability of criteria. Therefore, it has remarkable potential to address practical decision-making problems involving Z-information.