Tag Archives: Prediction By Simulation

Using multiple data with diverse fidelities to provide surrogate simulations through GPs

Ben Yang, Boyi Chen, Yanbin Liu, Jinbao Chen, Gaussian process fusion method for multi-fidelity data with heterogeneity distribution in aerospace vehicle flight dynamics, Engineering Applications of Artificial Intelligence, Volume 138, Part A, 2024, DOI: 10.1016/j.engappai.2024.109228.

In the engineering design of aerospace vehicles, design data at different stages exhibit hierarchical and heterogeneous distribution characteristics. Specifically, high-fidelity design data (such as from computational fluid dynamics simulations and flight tests) are costly and time-consuming to obtain. Moreover, the limited high-precision samples that are acquired often fail to cover the entire design space, resulting in a distribution characterized by small sample sizes. A critical challenge in data-driven modeling is efficiently fusing low-fidelity data with limited heterogeneous high-fidelity data to improve model accuracy and predictive performance. In response to this challenge, this paper introduces a Gaussian process fusion method for multi-fidelity data, founded on distribution characteristics. Multi-fidelity data are represented as intermediate surrogates using Gaussian processes, identifying heteroscedastic noise properties and deriving posterior distributions. The fusion is then treated as an optimization problem for prediction variance, using K-nearest neighbors and spatial clustering to determine optimal weights, which are adaptively adjusted based on sample density. These weights are adaptively adjusted based on the sample density to strengthen the local modeling behavior. The paper concludes with a comparative analysis, evaluating the proposed method against other conventional approaches using numerical cases and an aerodynamic prediction scenario for aerospace vehicles. A comparative analysis shows that the proposed method improves global modeling accuracy by 45% and reduces the demand for high-fidelity samples by over 40% compared to traditional methods. Applied in aerospace design, the method effectively merges multi-source data, establishing a robust hypersonic aerodynamic database while controlling modeling costs and demonstrating robustness to sample distribution.

Doing a more intelligent exploration in RL based on measuring uncertainty through prediction

Xiaoshu Zhou, Fei Zhu, Peiyao Zhao, Within the scope of prediction: Shaping intrinsic rewards via evaluating uncertainty, Expert Systems with Applications, Volume 206, 2022 DOI: 10.1016/j.eswa.2022.117775.

The agent of reinforcement learning based approaches needs to explore to learn more about the environment to seek optimal policy. However, simply increasing the frequency of stochastic exploration sometimes fails to work or even causes the agent to fall into traps. To solve the problem, it is essential to improve the quality of exploration. An approach, referred to as the scope of prediction based on uncertainty exploration (SPE), is proposed, taking advantage of the uncertainty mechanism and considering the stochasticity of prospecting. As by uncertainty mechanism, the unexpected states make more curiosity, the model derives higher uncertainty by projecting future scenarios to compare with the actual future to explore the world. The SPE method utilizes a prediction network to predict subsequent observations and calculates the mean squared difference value of the real observations and the following observations to measure uncertainty, encouraging the agent to explore unknown regions more effectively. Moreover, to reduce the noise interference caused by uncertainty, a reward-penalty model is developed to discriminate the noise by current observations and action prediction for future rewards to improve the interference ability against noise so that the agent can escape from the noisy region. Experiment results showed that deep reinforcement learning approaches equipped with SPE demonstrated significant improvements in simulated environments.

On the role and limitations of motor internal simulation as a way of predicting the effects of a future action in the brain

Myrthel Dogge, Ruud Custers, Henk Aarts, Moving Forward: On the Limits of Motor-Based Forward Models. Trends in Cognitive Sciences, Volume 23, Issue 9, 2019, Pages 743-753, DOI: 10.1016/j.tics.2019.06.008.

The human ability to anticipate the consequences that result from action is an essential building block for cognitive, emotional, and social functioning. A dominant view is that this faculty is based on motor predictions, in which a forward model uses a copy of the motor command to predict imminent sensory action-consequences. Although this account was originally conceived to explain the processing of action-outcomes that are tightly coupled to bodily movements, it has been increasingly extrapolated to effects beyond the body. Here, we critically evaluate this generalization and argue that, although there is ample evidence for the role of predictions in the processing of environment-related action-outcomes, there is hitherto little reason to assume that these predictions result from motor-based forward models.