Tag Archives: Perception

An hypothesis that human perception can only be done in real-time if prediction mechanisms go ahead and save the gap caused by the processing of inputs, which actually cannot be done in real-time (plus further post-processing and adjustment of past perceptions)

Hinze Hogendoorn, Perception in real-time: predicting the present, reconstructing the past, Trends in Cognitive Sciences, Volume 26, Issue 2, 2022 DOI: 10.1016/j.tics.2021.11.003.

We feel that we perceive events in the environment as they unfold in real-time. However, this intuitive view of perception is impossible to implement in the nervous system due to biological constraints such as neural transmission delays. I propose a new way of thinking about real-time perception: at any given moment, instead of representing a single timepoint, perceptual mechanisms represent an entire timeline. On this timeline, predictive mechanisms predict ahead to compensate for delays in incoming sensory input, and reconstruction mechanisms retroactively revise perception when those predictions do not come true. This proposal integrates and extends previous work to address a crucial gap in our understanding of a fundamental aspect of our everyday life: the experience of perceiving the present.

Adapting perception to environmental changes explicitly

Sriram Siva, Hao Zhang, Robot perceptual adaptation to environment changes for long-term human teammate following, The International Journal of Robotics Research. January 2020, DOI: 10.1177/0278364919896625.

Perception is one of the several fundamental abilities required by robots, and it also poses significant challenges, especially in real-world field applications. Long-term autonomy introduces additional difficulties to robot perception, including short- and long-term changes of the robot operation environment (e.g., lighting changes). In this article, we propose an innovative human-inspired approach named robot perceptual adaptation (ROPA) that is able to calibrate perception according to the environment context, which enables perceptual adaptation in response to environmental variations. ROPA jointly performs feature learning, sensor fusion, and perception calibration under a unified regularized optimization framework. We also implement a new algorithm to solve the formulated optimization problem, which has a theoretical guarantee to converge to the optimal solution. In addition, we collect a large-scale dataset from physical robots in the field, called perceptual adaptation to environment changes (PEAC), with the aim to benchmark methods for robot adaptation to short-term and long-term, and fast and gradual lighting changes for human detection based upon different feature modalities extracted from color and depth sensors. Utilizing the PEAC dataset, we conduct extensive experiments in the application of human recognition and following in various scenarios to evaluate ROPA. Experimental results have validated that the ROPA approach obtains promising performance in terms of accuracy and efficiency, and effectively adapts robot perception to address short-term and long-term lighting changes in human detection and following applications.