Tag Archives: Model Checking

Model checking for the verification of the correct functionality in the presence of sensor failures of a network of behaviours included in a robotic architecture

Lisa Kiekbusch, Christopher Armbrust, Karsten Berns, Formal verification of behaviour networks including sensor failures, Robotics and Autonomous Systems, Volume 74, Part B, December 2015, Pages 331-339, ISSN 0921-8890, DOI: 10.1016/j.robot.2015.08.002.

The paper deals with the problem of verifying behaviour-based control systems. Although failures in sensor hardware and software can have strong influences on the robot’s operation, they are often neglected in the verification process. Instead, perfect sensing is assumed. Therefore, this paper provides an approach for modelling the sensor chain in a formal way and connecting it to the formal model of the control system. The resulting model can be verified using model checking techniques, which is shown on the examples of the control systems of an autonomous indoor robot and an autonomous off-road robot.

Checking the behavior of robotic software (i.e., verification) and embedded sw in general, with a good related work on the issue

Lyons, D.M.; Arkin, R.C.; Shu Jiang; Tsung-Ming Liu; Nirmal, P., Performance Verification for Behavior-Based Robot Missions, Robotics, IEEE Transactions on , vol.31, no.3, pp.619,636, June 2015, DOI: 10.1109/TRO.2015.2418592.

Certain robot missions need to perform predictably in a physical environment that may have significant uncertainty. One approach is to leverage automatic software verification techniques to establish a performance guarantee. The addition of an environment model and uncertainty in both program and environment, however, means that the state space of a model-checking solution to the problem can be prohibitively large. An approach based on behavior-based controllers in a process-algebra framework that avoids state-space combinatorics is presented here. In this approach, verification of the robot program in the uncertain environment is reduced to a filtering problem for a Bayesian network. Validation results are presented for the verification of a multiple-waypoint and an autonomous exploration robot mission.