Tag Archives: Graph-based Slam

A nice SLAM approach based on hybrid Normal Distribution Transform (NDT) + occupancy grid maps intended for long term operation in dynamic environments

Erik Einhorn, Horst-Michael Gross, Generic NDT mapping in dynamic environments and its application for lifelong SLAM, Robotics and Autonomous Systems, Volume 69, July 2015, Pages 28-39, ISSN 0921-8890, DOI: 10.1016/j.robot.2014.08.008.

In this paper, we present a new, generic approach for Simultaneous Localization and Mapping (SLAM). First of all, we propose an abstraction of the underlying sensor data using Normal Distribution Transform (NDT) maps that are suitable for making our approach independent from the used sensor and the dimension of the generated maps. We present several modifications for the original NDT mapping to handle free-space measurements explicitly. We additionally describe a method to detect and handle dynamic objects such as moving persons. This enables the usage of the proposed approach in highly dynamic environments. In the second part of this paper we describe our graph-based SLAM approach that is designed for lifelong usage. Therefore, the memory and computational complexity is limited by pruning the pose graph in an appropriate way.

Good related work of graph-based SLAM algorithms that employ some reduction technique on the graph to improve long-term operation, and proposal of a new method of reduction

Carlevaris-Bianco, N.; Kaess, M.; Eustice, R.M., Generic Node Removal for Factor-Graph SLAM, Robotics, IEEE Transactions on , vol.30, no.6, pp.1371,1385, Dec. 2014. DOI: 10.1109/TRO.2014.2347571

This paper reports on a generic factor-based method for node removal in factor-graph simultaneous localization and mapping (SLAM), which we call generic linear constraints (GLCs). The need for a generic node removal tool is motivated by long-term SLAM applications, whereby nodes are removed in order to control the computational cost of graph optimization. GLC is able to produce a new set of linearized factors over the elimination clique that can represent either the true marginalization (i.e., dense GLC) or a sparse approximation of the true marginalization using a Chow-Liu tree (i.e., sparse GLC). The proposed algorithm improves upon commonly used methods in two key ways: First, it is not limited to graphs with strictly full-state relative-pose factors and works equally well with other low-rank factors, such as those produced by monocular vision. Second, the new factors are produced in such a way that accounts for measurement correlation, which is a problem encountered in other methods that rely strictly upon pairwise measurement composition. We evaluate the proposed method over multiple real-world SLAM graphs and show that it outperforms other recently proposed methods in terms of Kullback–Leibler divergence. Additionally, we experimentally demonstrate that the proposed GLC method provides a principled and flexible tool to control the computational complexity of long-term graph SLAM, with results shown for ${34.9}, {rm {h}}$ of real-world indoor–outdoor data covering ${147.4}{hbox{ km}}$ collected over $27$ mapping sessions spanning a period of $15$ months.