Tag Archives: Eeg Signals

Modelling ECGs with sums of gaussians and estimating them through switching Kalman Filters and the likelihood of each mode

Oster, J.; Behar, J.; Sayadi, O.; Nemati, S.; Johnson, A.E.W.; Clifford, G.D., Semisupervised ECG Ventricular Beat Classification With Novelty Detection Based on Switching Kalman Filters, in Biomedical Engineering, IEEE Transactions on , vol.62, no.9, pp.2125-2134, Sept. 2015, DOI: 10.1109/TBME.2015.2402236.

Automatic processing and accurate diagnosis of pathological electrocardiogram (ECG) signals remains a challenge. As long-term ECG recordings continue to increase in prevalence, driven partly by the ease of remote monitoring technology usage, the need to automate ECG analysis continues to grow. In previous studies, a model-based ECG filtering approach to ECG data from healthy subjects has been applied to facilitate accurate online filtering and analysis of physiological signals. We propose an extension of this approach, which models not only normal and ventricular heartbeats, but also morphologies not previously encountered. A switching Kalman filter approach is introduced to enable the automatic selection of the most likely mode (beat type), while simultaneously filtering the signal using appropriate prior knowledge. Novelty detection is also made possible by incorporating a third mode for the detection of unknown (not previously observed) morphologies, and denoted as X-factor. This new approach is compared to state-of-the-art techniques for the ventricular heartbeat classification in the MIT-BIH arrhythmia and Incart databases. F1 scores of 98.3% and 99.5% were found on each database, respectively, which are superior to other published algorithms’ results reported on the same databases. Only 3% of all the beats were discarded as X-factor, and the majority of these beats contained high levels of noise. The proposed technique demonstrates accurate beat classification in the presence of previously unseen (and unlearned) morphologies and noise, and provides an automated method for morphological analysis of arbitrary (unknown) ECG leads.

Estimating states of a human teleoperator and studying their influence in performing control

Yunyi Jia, Ning Xi, Shuang Liu, Yunxia Wang, Xin Li, and Sheng Bi, Quality of teleoperator adaptive control for telerobotic operations The International Journal of Robotics Research December 2014 33: 1765-1781, first published on November 13, 2014. DOI: 10.1177/0278364914556124

Extensive studies have been conducted on telerobotic operations for decades due to their widespread applications in a variety of areas. Most studies have been focused on two major issues: stability and telepresence. Few have studied the influence of the operation status of the teleoperator on the performance of telerobotic operations. As subnormal operation status of the teleoperator may result in insufficient and even incorrect operations, the quality of teleoperator (QoT) is an important impact on the performance of the telerobotic operations in terms of the efficiency and safety even if both the stability and telepresence are guaranteed. Therefore, this paper investigates the online identification of the QoT and its application to telerobotic operations. The QoT is identified based on five QoT indicators which are generated based on the teleoperator’s brain EEG signals. A QoT adaptive control method is designed to adapt the velocity and responsivity of the robotic system to the operation status of the teleoperator such that the teleoperation efficiency and safety can be enhanced. The online QoT identification method was conducted on various teleoperators and the QoT adaptive control method was implemented on a mobile manipulator teleoperation system. The experimental results demonstrated the effectiveness and advantages of the proposed methods.