How to improve statistical results obtained from limited set-ups through active sampling, and a nice review of possible pitfalls in conducting statistical research (and a mention to “pre-registration” of hypothesis and plans to be peer-reviewed before submitting the results)

Romy Lorenz, Adam Hampshire, Robert Leech, Neuroadaptive Bayesian Optimization and Hypothesis Testing, Trends in Cognitive Sciences, Volume 21, Issue 3, March 2017, Pages 155-167, ISSN 1364-6613, DOI: 10.1016/j.tics.2017.01.006.

Cognitive neuroscientists are often interested in broad research questions, yet use overly narrow experimental designs by considering only a small subset of possible experimental conditions. This limits the generalizability and reproducibility of many research findings. Here, we propose an alternative approach that resolves these problems by taking advantage of recent developments in real-time data analysis and machine learning. Neuroadaptive Bayesian optimization is a powerful strategy to efficiently explore more experimental conditions than is currently possible with standard methodology. We argue that such an approach could broaden the hypotheses considered in cognitive science, improving the generalizability of findings. In addition, Bayesian optimization can be combined with preregistration to cover exploration, mitigating researcher bias more broadly and improving reproducibility.

Comments are closed.

Post Navigation