First end-to-end implementation of (monocular) Visual Odometry with deep neural networks, including output with the uncertainty of the result

Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni, End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks, The International Journal of Robotics Research Vol 37, Issue 4-5, pp. 513 – 542, DOI: 0.1177/0278364917734298.

This paper studies visual odometry (VO) from the perspective of deep learning. After tremendous efforts in the robotics and computer vision communities over the past few decades, state-of-the-art VO algorithms have demonstrated incredible performance. However, since the VO problem is typically formulated as a pure geometric problem, one of the key features still missing from current VO systems is the capability to automatically gain knowledge and improve performance through learning. In this paper, we investigate whether deep neural networks can be effective and beneficial to the VO problem. An end-to-end, sequence-to-sequence probabilistic visual odometry (ESP-VO) framework is proposed for the monocular VO based on deep recurrent convolutional neural networks. It is trained and deployed in an end-to-end manner, that is, directly inferring poses and uncertainties from a sequence of raw images (video) without adopting any modules from the conventional VO pipeline. It can not only automatically learn effective feature representation encapsulating geometric information through convolutional neural networks, but also implicitly model sequential dynamics and relation for VO using deep recurrent neural networks. Uncertainty is also derived along with the VO estimation without introducing much extra computation. Extensive experiments on several datasets representing driving, flying and walking scenarios show competitive performance of the proposed ESP-VO to the state-of-the-art methods, demonstrating a promising potential of the deep learning technique for VO and verifying that it can be a viable complement to current VO systems.

Automatic hierarchization for the recognition of places in images

Chen Fan, Zetao Chen, Adam Jacobson, Xiaoping Hu, Michael Milford, Biologically-inspired visual place recognition with adaptive multiple scales,Robotics and Autonomous Systems, Volume 96, 2017, Pages 224-237, DOI: 10.1016/j.robot.2017.07.015.

In this paper we present a novel adaptive multi-scale system for performing visual place recognition. Unlike recent previous multi-scale place recognition systems that use manually pre-fixed scales, we present a system that adaptively selects the spatial scales. This approach differs from previous multi-scale methods, where place recognition is performed through a non-optimized distance metric in a fixed and pre-determined scale space. Instead, we learn an optimized distance metric which creates a new recognition space for clustering images with similar features while separating those with different features. Consequently, the method exploits the natural spatial scales present in the operating environment. With these adaptive scales, a hierarchical recognition mechanism with multiple parallel channels is then proposed. Each channel performs place recognition from a coarse match to a fine match. We present specific techniques for training each channel to recognize places at varying spatial scales and for combining the place recognition hypotheses from these parallel channels. We also conduct a systematic series of experiments and parameter studies that determine the effect on performance of using different numbers of combined recognition channels. The results demonstrate that the adaptive multi-scale approach outperforms the previous fixed multi-scale approach and is capable of producing better than state of the art performance compared to existing robotic navigation algorithms. The system complexity is linear in the number of places in the reference static map and can realize the online place recognition in mobile robotics on typical dataset sizes We analyze the results and provide theoretical analysis of the performance improvements. Finally, we discuss interesting insights gained with respect to future work in robotics and neuroscience in this area.

On the need of integrating emotions in robotic architectures

Luiz Pessoa, Do Intelligent Robots Need Emotion?,Trends in Cognitive Sciences, Volume 21, Issue 11, 2017, Pages 817-819, DOI: 10.1016/j.tics.2017.06.010.

What is the place of emotion in intelligent robots? Researchers have advocated the inclusion of some emotion-related components in the information-processing architecture of autonomous agents. It is argued here that emotion needs to be merged with all aspects of the architecture: cognitive–emotional integration should be a key design principle.

Kalman Filter as the extreme case of finite impulse response filters as the horizon increases in length

Shunyi Zhao, Biao Huang, Yuriy S. Shmaliy, Bayesian state estimation on finite horizons: The case of linear state–space model,Automatica, Volume 85, 2017, Pages 91-99, DOI: 10.1016/j.automatica.2017.07.043.

The finite impulse response (FIR) filter and infinite impulse response filter including the Kalman filter (KF) are generally considered as two different types of state estimation methods. In this paper, the sequential Bayesian philosophy is extended to a filter design using a fixed amount of most recent measurements, with the aim of exploiting the FIR structure and unifying some basic FIR filters with the KF. Specifically, the conditional mean and covariance of the posterior probability density functions are first derived to show the FIR counterpart of the KF. To remove the dependence on initial states, the corresponding likelihood is further maximized and realized iteratively. It shows that the maximum likelihood modification unifies the existing unbiased FIR filters by tuning a weighting matrix. Moreover, it converges to the Kalman estimate with the increase of horizon length, and can thus be considered as a link between the FIR filtering and the KF. Several important properties including stability and robustness against errors of noise statistics are illustrated. Finally, a moving target tracking example and an experiment with a three degrees-of-freedom helicopter system are introduced to demonstrate effectiveness.

Using EKF to estimate the state of a quadcopter in SE(3)

Goodarzi, F.A. & Lee, Global Formulation of an Extended Kalman Filter on SE(3) for Geometric Control of a Quadrotor UAV, J Intell Robot Syst (2017) 88: 395, DOI: 10.1007/s10846-017-0525-6.

An extended Kalman filter (EKF) is developed on the special Euclidean group, S E(3) for geometric control of a quadrotor UAV. It is obtained by performing an intrinsic form of linearization on S E(3) to estimate the state of the quadrotor from noisy measurements. The proposed estimator considers all of the coupling effects between rotational and translational dynamics, and it is developed in a coordinate-free fashion. The desirable features of the proposed EKF are illustrated by numerical examples and experimental results for several scenarios. The proposed estimation scheme on S E(3) has been unprecedented and these results can be particularly useful for aggressive maneuvers in GPS denied environments or in situations where parts of onboard sensors fail.

Cognitive informatics: simulation of cognition through direct simulation of neurons

Shivhare, R., Cherukuri, A.K. & Li, Establishment of Cognitive Relations Based on Cognitive Informatics, J. Cogn Comput (2017) 9: 721, DOI: 10.1007/s12559-017-9498-9.

Cognitive informatics (CI) is an interdisciplinary study on modelling of the brain in terms of knowledge and information processing. In CI, objects/attributes are considered as neurons connected to each other via synapse. The relation represents the synapse in CI. In order to represent new information the brain generates new synapse or relation between the existing neurons. Therefore, the establishment of cognitive relations is essential to represent new information. In order to represent new information, we propose an algorithm which creates cognitive relation between the pair of objects and attributes by using the relational attribute and object method. Further, the cognitive relations between the pair of objects or attributes within the context could be checked with newly defined conditions, i.e. the necessary and sufficient condition. These conditions will evaluate whether the relational object and attribute is adequate to have relations between the pair of objects and attributes. The new information is obtained without increasing the number of neurons in brain. It is achieved by creating cognitive relations between the pair of objects and attributes. The obtained results are beneficial to simulate the intelligence behaviour of brain such as learning and memorizing. Integrating the idea of CI into cognitive relations is a promising and challenging research direction. In this paper, we have discussed it from the aspects of cognitive mechanism, cognitive computing and cognitive process.

On the problem of the future limits of information storage

Cambria, E., Chattopadhyay, A., Linn, E. et al, Storages Are Not Forever, Cogn Comput (2017) 9: 646, DOI: 10.1007/s12559-017-9482-4.

Not unlike the concern over diminishing fossil fuel, information technology is bringing its own share of future worries. We chose to look closely into one concern in this paper, namely the limited amount of data storage. By a simple extrapolatory analysis, it is shown that we are on the way to exhaust our storage capacity in less than two centuries with current technology and no recycling. This can be taken as a note of caution to expand research initiative in several directions: firstly, bringing forth innovative data analysis techniques to represent, learn, and aggregate useful knowledge while filtering out noise from data; secondly, tap onto the interplay between storage and computing to minimize storage allocation; thirdly, explore ingenious solutions to expand storage capacity. Throughout this paper, we delve deeper into the state-of-the-art research and also put forth novel propositions in all of the abovementioned directions, including space- and time-efficient data representation, intelligent data aggregation, in-memory computing, extra-terrestrial storage, and data curation. The main aim of this paper is to raise awareness on the storage limitation we are about to face if current technology is adopted and the storage utilization growth rate persists. In the manuscript, we propose some storage solutions and a better utilization of storage capacity through a global DIKW hierarchy.

An open-source implementation of visual SLAM with a very nice related-work section

R. Mur-Artal and J. D. Tardós, ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras, IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, DOI: 10.1109/TRO.2017.2705103.

We present ORB-SLAM2, a complete simultaneous localization and mapping (SLAM) system for monocular, stereo and RGB-D cameras, including map reuse, loop closing, and relocalization capabilities. The system works in real time on standard central processing units in a wide variety of environments from small hand-held indoors sequences, to drones flying in industrial environments and cars driving around a city. Our back-end, based on bundle adjustment with monocular and stereo observations, allows for accurate trajectory estimation with metric scale. Our system includes a lightweight localization mode that leverages visual odometry tracks for unmapped regions and matches with map points that allow for zero-drift localization. The evaluation on 29 popular public sequences shows that our method achieves state-of-the-art accuracy, being in most cases the most accurate SLAM solution. We publish the source code, not only for the benefit of the SLAM community, but with the aim of being an out-of-the-box SLAM solution for researchers in other fields.

Example of learning a Bayesian network using expert knowledge

H. Amirkhani, M. Rahmati, P. J. F. Lucas and A. Hommersom, Exploiting Experts’ Knowledge for Structure Learning of Bayesian Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 11, pp. 2154-2170, DOI: 10.1109/TPAMI.2016.2636828.

Learning Bayesian network structures from data is known to be hard, mainly because the number of candidate graphs is super-exponential in the number of variables. Furthermore, using observational data alone, the true causal graph is not discernible from other graphs that model the same set of conditional independencies. In this paper, it is investigated whether Bayesian network structure learning can be improved by exploiting the opinions of multiple domain experts regarding cause-effect relationships. In practice, experts have different individual probabilities of correctly labeling the inclusion or exclusion of edges in the structure. The accuracy of each expert is modeled by three parameters. Two new scoring functions are introduced that score each candidate graph based on the data and experts’ opinions, taking into account their accuracy parameters. In the first scoring function, the experts’ accuracies are estimated using an expectation-maximization-based algorithm and the estimated accuracies are explicitly used in the scoring process. The second function marginalizes out the accuracy parameters to obtain more robust scores when it is not possible to obtain a good estimate of experts’ accuracies. The experimental results on simulated and real world datasets show that exploiting experts’ knowledge can improve the structure learning if we take the experts’ accuracies into account.

Dealing with nonlinearities in Kalman filters through Monte Carlo modelling for minimizing divergence

S. Gultekin and J. Paisley, Nonlinear Kalman Filtering With Divergence Minimization, IEEE Transactions on Signal Processing, vol. 65, no. 23, pp. 6319-6331, DOI: 10.1109/TSP.2017.2752729.

We consider the nonlinear Kalman filtering problem using Kullback-Leibler (KL) and α-divergence measures as optimization criteria. Unlike linear Kalman filters, nonlinear Kalman filters do not have closed form Gaussian posteriors because of a lack of conjugacy due to the nonlinearity in the likelihood. In this paper, we propose novel algorithms to approximate this posterior by optimizing the forward and reverse forms of the KL divergence, as well as the α-divergence that contains these two as limiting cases. Unlike previous approaches, our algorithms do not make approximations to the divergences being optimized, but use Monte Carlo techniques to derive unbiased algorithms for direct optimization. We assess performance on radar and sensor tracking, and options pricing, showing general improvement over the extended, unscented, and ensemble Kalman filters, as well as competitive performance with particle filtering.