Interesting approach to learning the sensorimotor behavior of a robot and of its predictive capabilities through NN

R. Santos, R. Ferreira, Â. Cardoso and A. Bernardino, SNet: Co-Developing Artificial Retinas and Predictive Internal Models for Real Robots, IEEE Transactions on Cognitive and Developmental Systems, vol. 9, no. 3, pp. 213-222, DOI: 10.1109/TCDS.2016.2638885.

This paper focuses on a recently developed biologically inspired architecture, here denoted as sensorimotor network (SNet), able to co-develop sensorimotor structures directly from data acquired by a robot interacting with its environment. Such networks learn efficient internal models of the sensorimotor system, developing simultaneously sensor and motor representations as well as predictive models of the sensorimotor relationships adapted to their operating environment. Here, we describe our recent model of sensorimotor development and compare its performance with neural network models in predicting self-induced stimuli. In addition, we illustrate the influence of available resources and environment characteristics in the development of the SNet structures. Finally, an SNet is trained using real data recorded during a quadricopter drone flight.

Comments are closed.

Post Navigation