Tarokh, M., A unified kinematics modeling, optimization and control of universal robots: from serial and parallel manipulators to walking, rolling and hybrid robots, . Auton Robot 44, 1233–1248 (2020) DOI: 10.1007/s10514-020-09929-6.
The paper develops a unified kinematics modeling, optimization and control that is applicable to a wide range of autonomous and non-autonomous robots. These include hybrid robots that combine two or more modes of operations, such as combination of walking and rolling, or rolling and manipulation, as well as parallel robots in various configurations. The equations of motion are derived in compact forms that embed an optimization criterion. These equations are used to obtain various useful forms of the robot kinematics such as recursive, body and limb-end kinematic forms. Using the modeling, actuation and control equations are derived that ensure traversing a desired path while maintaining balanced operations and tip-over avoidance. Various simulation results are provided for a hybrid rolling-walking robot, which demonstrate the capabilities and effectiveness of the developed methodologies.