Tag Archives: Model Learning

Embedding actual knowledge into Deep Learning to improve its reliability

Lutter M, Peters J., Combining physics and deep learning to learn continuous-time dynamics models, The International Journal of Robotics Research. 2023;42(3):83-107 DOI: 10.1177/02783649231169492.

Deep learning has been widely used within learning algorithms for robotics. One disadvantage of deep networks is that these networks are black-box representations. Therefore, the learned approximations ignore the existing knowledge of physics or robotics. Especially for learning dynamics models, these black-box models are not desirable as the underlying principles are well understood and the standard deep networks can learn dynamics that violate these principles. To learn dynamics models with deep networks that guarantee physically plausible dynamics, we introduce physics-inspired deep networks that combine first principles from physics with deep learning. We incorporate Lagrangian mechanics within the model learning such that all approximated models adhere to the laws of physics and conserve energy. Deep Lagrangian Networks (DeLaN) parametrize the system energy using two networks. The parameters are obtained by minimizing the squared residual of the Euler\u2013Lagrange differential equation. Therefore, the resulting model does not require specific knowledge of the individual system, is interpretable, and can be used as a forward, inverse, and energy model. Previously these properties were only obtained when using system identification techniques that require knowledge of the kinematic structure. We apply DeLaN to learning dynamics models and apply these models to control simulated and physical rigid body systems. The results show that the proposed approach obtains dynamics models that can be applied to physical systems for real-time control. Compared to standard deep networks, the physics-inspired models learn better models and capture the underlying structure of the dynamics.

Bayesian estimation of the model in model-based RL for robots

Senda, Kei, Hishinuma, Toru, Tani, Yurika, Approximate Bayesian reinforcement learning based on estimation of plant, Autonomous Robots 44(5), DOI: 10.1007/s10514-020-09901-4.

This study proposes an approximate parametric model-based Bayesian reinforcement learning approach for robots, based on online Bayesian estimation and online planning for an estimated model. The proposed approach is designed to learn a robotic task with a few real-world samples and to be robust against model uncertainty, within feasible computational resources. The proposed approach employs two-stage modeling, which is composed of (1) a parametric differential equation model with a few parameters based on prior knowledge such as equations of motion, and (2) a parametric model that interpolates a finite number of transition probability models for online estimation and planning. The proposed approach modifies the online Bayesian estimation to be robust against approximation errors of the parametric model to a real plant. The policy planned for the interpolating model is proven to have a form of theoretical robustness. Numerical simulation and hardware experiments of a planar peg-in-hole task demonstrate the effectiveness of the proposed approach.

Including the models into the state of a POMDP for learning them (using POMCPs in a robotic application)

Akinobu Hayashi, Dirk Ruiken, Tadaaki Hasegawa, Christian Goerick, Reasoning about uncertain parameters and agent behaviors through encoded experiences and belief planning, Artificial Intelligence, Volume 280, 2020 DOI: 10.1016/j.artint.2019.103228.

Robots are expected to handle increasingly complex tasks. Such tasks often include interaction with objects or collaboration with other agents. One of the key challenges for reasoning in such situations is the lack of accurate models that hinders the effectiveness of planners. We present a system for online model adaptation that continuously validates and improves models while solving tasks with a belief space planner. We employ the well known online belief planner POMCP. Particles are used to represent hypotheses about the current state and about models of the world. They are sufficient to configure a simulator to provide transition and observation models. We propose an enhanced particle reinvigoration process that leverages prior experiences encoded in a recurrent neural network (RNN). The network is trained through interaction with a large variety of object and agent parametrizations. The RNN is combined with a mixture density network (MDN) to process the current history of observations in order to propose suitable particles and models parametrizations. The proposed method also ensures that newly generated particles are consistent with the current history. These enhancements to the particle reinvigoration process help alleviate problems arising from poor sampling quality in large state spaces and enable handling of dynamics with discontinuities. The proposed approach can be applied to a variety of domains depending on what uncertainty the decision maker needs to reason about. We evaluate the approach with experiments in several domains and compare against other state-of-the-art methods. Experiments are done in a collaborative multi-agent and a single agent object manipulation domain. The experiments are performed both in simulation and on a real robot. The framework handles reasoning with uncertain agent behaviors and with unknown object and environment parametrizations well. The results show good performance and indicate that the proposed approach can improve existing state-of-the-art methods.