Tag Archives: Model Learning

Including the models into the state of a POMDP for learning them (using POMCPs in a robotic application)

Akinobu Hayashi, Dirk Ruiken, Tadaaki Hasegawa, Christian Goerick, Reasoning about uncertain parameters and agent behaviors through encoded experiences and belief planning, Artificial Intelligence, Volume 280, 2020 DOI: 10.1016/j.artint.2019.103228.

Robots are expected to handle increasingly complex tasks. Such tasks often include interaction with objects or collaboration with other agents. One of the key challenges for reasoning in such situations is the lack of accurate models that hinders the effectiveness of planners. We present a system for online model adaptation that continuously validates and improves models while solving tasks with a belief space planner. We employ the well known online belief planner POMCP. Particles are used to represent hypotheses about the current state and about models of the world. They are sufficient to configure a simulator to provide transition and observation models. We propose an enhanced particle reinvigoration process that leverages prior experiences encoded in a recurrent neural network (RNN). The network is trained through interaction with a large variety of object and agent parametrizations. The RNN is combined with a mixture density network (MDN) to process the current history of observations in order to propose suitable particles and models parametrizations. The proposed method also ensures that newly generated particles are consistent with the current history. These enhancements to the particle reinvigoration process help alleviate problems arising from poor sampling quality in large state spaces and enable handling of dynamics with discontinuities. The proposed approach can be applied to a variety of domains depending on what uncertainty the decision maker needs to reason about. We evaluate the approach with experiments in several domains and compare against other state-of-the-art methods. Experiments are done in a collaborative multi-agent and a single agent object manipulation domain. The experiments are performed both in simulation and on a real robot. The framework handles reasoning with uncertain agent behaviors and with unknown object and environment parametrizations well. The results show good performance and indicate that the proposed approach can improve existing state-of-the-art methods.