Human+machine sequential decision making

Q. Zhang, Y. Kang, Y. -B. Zhao, P. Li and S. You, Traded Control of Human\u2013Machine Systems for Sequential Decision-Making Based on Reinforcement Learning, IEEE Transactions on Artificial Intelligence, vol. 3, no. 4, pp. 553-566, Aug. 2022 DOI: 10.1109/TAI.2021.3127857.

Sequential decision-making (SDM) is a common type of decision-making problem with sequential and multistage characteristics. Among them, the learning and updating of policy are the main challenges in solving SDM problems. Unlike previous machine autonomy driven by artificial intelligence alone, we improve the control performance of SDM tasks by combining human intelligence and machine intelligence. Specifically, this article presents a paradigm of a human\u2013machine traded control systems based on reinforcement learning methods to optimize the solution process of sequential decision problems. By designing the idea of autonomous boundary and credibility assessment, we enable humans and machines at the decision-making level of the systems to collaborate more effectively. And the arbitration in the human\u2013machine traded control systems introduces the Bayesian neural network and the dropout mechanism to consider the uncertainty and security constraints. Finally, experiments involving machine traded control, human traded control were implemented. The preliminary experimental results of this article show that our traded control method improves decision-making performance and verifies the effectiveness for SDM problems.

Comments are closed.

Post Navigation