Category Archives: Psycho-physiological Bases Of Engineering

Formalization of “making sense” of sensory perceptions and use in several practical cases that compare favourably, because of the use of induction, to neural network approaches

Richard Evans, José Hernández-Orallo, Johannes Welbl, Pushmeet Kohli, Marek Sergot, Making sense of sensory input, . Artificial Intelligence, Volume 293, 2021 DOI: 10.1016/j.artint.2020.103438.

This paper attempts to answer a central question in unsupervised learning: what does it mean to “make sense” of a sensory sequence? In our formalization, making sense involves constructing a symbolic causal theory that both explains the sensory sequence and also satisfies a set of unity conditions. The unity conditions insist that the constituents of the causal theory – objects, properties, and laws – must be integrated into a coherent whole. On our account, making sense of sensory input is a type of program synthesis, but it is unsupervised program synthesis. Our second contribution is a computer implementation, the Apperception Engine, that was designed to satisfy the above requirements. Our system is able to produce interpretable human-readable causal theories from very small amounts of data, because of the strong inductive bias provided by the unity conditions. A causal theory produced by our system is able to predict future sensor readings, as well as retrodict earlier readings, and impute (fill in the blanks of) missing sensory readings, in any combination. In fact, it is able to do all three tasks simultaneously. We tested the engine in a diverse variety of domains, including cellular automata, rhythms and simple nursery tunes, multi-modal binding problems, occlusion tasks, and sequence induction intelligence tests. In each domain, we test our engine’s ability to predict future sensor values, retrodict earlier sensor values, and impute missing sensory data. The Apperception Engine performs well in all these domains, significantly out-performing neural net baselines. We note in particular that in the sequence induction intelligence tests, our system achieved human-level performance. This is notable because our system is not a bespoke system designed specifically to solve intelligence tests, but a general-purpose system that was designed to make sense of any sensory sequence.

Continuation paper: https://doi.org/10.1016/j.artint.2021.103521

Notes:

  • Use HMMs with the states being sets of atomic propositions and the transition function logical predicates, therefore mixing a non-symbolic framework (HMM) with a completely symbolic one.
  • Assume perceptions to be previously discretized and modelled as grounded atoms.
  • Need to be provided with both the sensory (discretized) input and commonsense knowledge about the predicates used for making sense.
  • Include a very clear and simple representation of deduction, induction and abduction (Fig. 1).

On the role of the hippocampus in managing the environmental context

Andrew P. Maurer, Lynn Nadel, The Continuity of Context: A Role for the Hippocampus, . Trends in Cognitive Sciences, Volume 25, Issue 3, 2021, Pages 187-199 DOI: 10.1016/j.tics.2020.12.007.

Tracking moment-to-moment change in input and detecting change sufficient to require altering behavior is crucial to survival. Here, we discuss how the brain evaluates change over time, focusing on the hippocampus and its role in tracking context. We leverage the anatomy and physiology of the hippocampal longitudinal axis, re-entrant loops, and amorphous networks to account for stimulus equivalence and the updating of an organism’s sense of its context. Place cells have a central role in tracking contextual continuities and discontinuities across multiple scales, a capacity beyond current models of pattern separation and completion. This perspective highlights the critical role of the hippocampus in both spatial cognition and episodic memory: tracking change and detecting boundaries separating one context, or episode, from another.

On how human intelligence depends on our physiological limitations

Thomas L. Griffiths, Understanding Human Intelligence through Human Limitations, . Trends in Cognitive Sciences, Volume 24, Issue 11, 2020, Pages 873-883 DOI: 10.1016/j.tics.2020.09.001.

(no abstract)

Map – space – language entaglement

Luca Rinaldi, Marco Marelli, Maps and Space Are Entangled with Language Experience, . Trends in Cognitive Sciences, Volume 24, Issue 11, 2020, Pages 853-855, DOI: 10.1016/j.tics.2020.07.009.

(no abstract)

It seems that consciousness is not an analog uni-dimensional line, but multi-dimensional

Jonathan Birch, Alexandra K. Schnell, Nicola S. Clayton, Dimensions of Animal Consciousness. Trends in Cognitive Sciences, Volume 24, Issue 10, 2020, Pages 789-801 DOI: 10.1016/j.tics.2020.07.007.

How does consciousness vary across the animal kingdom? Are some animals ‘more conscious’ than others? This article presents a multidimensional framework for understanding interspecies variation in states of consciousness. The framework distinguishes five key dimensions of variation: perceptual richness, evaluative richness, integration at a time, integration across time, and self-consciousness. For each dimension, existing experiments that bear on it are reviewed and future experiments are suggested. By assessing a given species against each dimension, we can construct a consciousness profile for that species. On this framework, there is no single scale along which species can be ranked as more or less conscious. Rather, each species has its own distinctive consciousness profile.

It seems that our brain predicts semantic features of sensory stimuli to come

Friedemann Pulvermüller, Luigi Grisoni, Semantic Prediction in Brain and Mind. Trends in Cognitive Sciences, Volume 24, Issue 10, 2020, Pages 781-784 DOI: 10.1016/j.tics.2020.07.002.

We highlight a novel brain correlate of prediction, the prediction potential (or PP), a slow negative-going potential shift preceding visual, acoustic, and spoken or written verbal stimuli that can be predicted from their context. The cortical sources underlying the prediction potential reflect perceptual and semantic features of anticipated stimuli before these appear.

“Early exit” deep neural networks (i.e., CNN that provide outputs at intermediate points)

Scardapane, S., Scarpiniti, M., Baccarelli, E. et al. , Why Should We Add Early Exits to Neural Networks? . Cogn Comput 12, 954–966 (2020) DOI: 10.1007/s12559-020-09734-4.

Deep neural networks are generally designed as a stack of differentiable layers, in which a prediction is obtained only after running the full stack. Recently, some contributions have proposed techniques to endow the networks with early exits, allowing to obtain predictions at intermediate points of the stack. These multi-output networks have a number of advantages, including (i) significant reductions of the inference time, (ii) reduced tendency to overfitting and vanishing gradients, and (iii) capability of being distributed over multi-tier computation platforms. In addition, they connect to the wider themes of biological plausibility and layered cognitive reasoning. In this paper, we provide a comprehensive introduction to this family of neural networks, by describing in a unified fashion the way these architectures can be designed, trained, and actually deployed in time-constrained scenarios. We also describe in-depth their application scenarios in 5G and Fog computing environments, as long as some of the open research questions connected to them.

A new theory: we are curious about tasks that increase our ability to solve as many future tasks as possible

Franziska Brändle, Charley M. Wu, Eric Schulz, What Are We Curious about?, . Trends in Cognitive Sciences, Volume 24, Issue 9, 2020 DOI: 10.1016/j.tics.2020.05.010.

(no abstract).

Predicting optimistically seems to lead to better response of the agent to achieve the best goals

Zekun Sun, Chaz Firestone, Optimism and Pessimism in the Predictive Brain, . Trends in Cognitive Sciences, Volume 24, Issue 9, 2020 DOI: 10.1016/j.tics.2020.06.001.

(no abstract).

Interesting review of pshycological motivation and the role of RL in studying it

Randall C. O’Reilly, Unraveling the Mysteries of Motivation, Trends in Cognitive Sciences, Volume 24, Issue 6, 2020, Pages 425-434, DOI: 10.1016/j.tics.2020.03.001.

Motivation plays a central role in human behavior and cognition but is not well captured by widely used artificial intelligence (AI) and computational modeling frameworks. This Opinion article addresses two central questions regarding the nature of motivation: what are the nature and dynamics of the internal goals that drive our motivational system and how can this system be sufficiently flexible to support our ability to rapidly adapt to novel situations, tasks, etc.? In reviewing existing systems and neuroscience research and theorizing on these questions, a wealth of insights to constrain the development of computational models of motivation can be found.