Tag Archives: Long-short Term Memory

Including attention mechanisms in long-short term memory

Lin, X., Zhong, G., Chen, K. et al, Attention-Augmented Machine Memory, . Cogn Comput 13, 751–760 (2021) DOI: 10.1007/s12559-021-09854-5.

Attention mechanism plays an important role in the perception and cognition of human beings. Among others, many machine learning models have been developed to memorize the sequential data, such as the Long Short-Term Memory (LSTM) network and its extensions. However, due to lack of the attention mechanism, they cannot pay special attention to the important parts of the sequences. In this paper, we present a novel machine learning method called attention-augmented machine memory (AAMM). It seamlessly integrates the attention mechanism into the memory cell of LSTM. As a result, it facilitates the network to focus on valuable information in the sequences and ignore irrelevant information during its learning. We have conducted experiments on two sequence classification tasks for pattern classification and sentiment analysis, respectively. The experimental results demonstrate the advantages of AAMM over LSTM and some other related approaches. Hence, AAMM can be considered as a substitute of LSTM in the sequence learning applications.