Category Archives: Developmental Robotics

On the importance of dynamics and diversity in (cognitive) symbol systems

Tadahiro Taniguchi; Emre Ugur; Matej Hoffmann; Lorenzo Jamone; Takayuki Nagai; Benjamin Rosman, Symbol Emergence in Cognitive Developmental Systems: A Survey, IEEE Transactions on Cognitive and Developmental Systems ( Volume: 11, Issue: 4, Dec. 2019), DOI: 10.1109/TCDS.2018.2867772.

Humans use signs, e.g., sentences in a spoken language, for communication and thought. Hence, symbol systems like language are crucial for our communication with other agents and adaptation to our real-world environment. The symbol systems we use in our human society adaptively and dynamically change over time. In the context of artificial intelligence (AI) and cognitive systems, the symbol grounding problem has been regarded as one of the central problems related to symbols. However, the symbol grounding problem was originally posed to connect symbolic AI and sensorimotor information and did not consider many interdisciplinary phenomena in human communication and dynamic symbol systems in our society, which semiotics considered. In this paper, we focus on the symbol emergence problem, addressing not only cognitive dynamics but also the dynamics of symbol systems in society, rather than the symbol grounding problem. We first introduce the notion of a symbol in semiotics from the humanities, to leave the very narrow idea of symbols in symbolic AI. Furthermore, over the years, it became more and more clear that symbol emergence has to be regarded as a multifaceted problem. Therefore, second, we review the history of the symbol emergence problem in different fields, including both biological and artificial systems, showing their mutual relations. We summarize the discussion and provide an integrative viewpoint and comprehensive overview of symbol emergence in cognitive systems. Additionally, we describe the challenges facing the creation of cognitive systems that can be part of symbol emergence systems.

Interesting related work on internal models for action prediction and on the exploration/exploitation trade-off

Simón C. Smith; J. Michael Herrmann, Evaluation of Internal Models in Autonomous Learning, IEEE Transactions on Cognitive and Developmental Systems ( Volume: 11, Issue: 4, Dec. 2019), DOI: 10.1109/TCDS.2018.2865999.

Internal models (IMs) can represent relations between sensors and actuators in natural and artificial agents. In autonomous robots, the adaptation of IMs and the adaptation of the behavior are interdependent processes which have been studied under paradigms for self-organization of behavior such as homeokinesis. We compare the effect of various types of IMs on the generation of behavior in order to evaluate model quality across different behaviors. The considered IMs differ in the degree of flexibility and expressivity related to, respectively, learning speed and structural complexity of the model. We show that the different IMs generate different error characteristics which in turn lead to variations of the self-generated behavior of the robot. Due to the tradeoff between error minimization and complexity of the explored environment, we compare the models in the sense of Pareto optimality. Among the linear and nonlinear models that we analyze, echo-state networks achieve a particularly high performance which we explain as a result of the combination of fast learning and complex internal dynamics. More generally, we provide evidence that Pareto optimization is preferable in autonomous learning as it allows that a special solution can be negotiated in any particular environment.

Mixing human advice and reward functions for improving reinforcement learning of motor skills in robots with a nice related work on interactive RL

Carlos Celemin, Guilherme Maeda, Javier Ruiz-del-Solar, Jan Peters, Jens Kober, Reinforcement learning of motor skills using Policy Search and human corrective advice, The International Journal of Robotics Research, Vol 38, Issue 14, 2019, DOI: 10.1177/0278364919871998.

Robot learning problems are limited by physical constraints, which make learning successful policies for complex motor skills on real systems unfeasible. Some reinforcement learning methods, like Policy Search, offer stable convergence toward locally optimal solutions, whereas interactive machine learning or learning-from-demonstration methods allow fast transfer of human knowledge to the agents. However, most methods require expert demonstrations. In this work, we propose the use of human corrective advice in the actions domain for learning motor trajectories. Additionally, we combine this human feedback with reward functions in a Policy Search learning scheme. The use of both sources of information speeds up the learning process, since the intuitive knowledge of the human teacher can be easily transferred to the agent, while the Policy Search method with the cost/reward function take over for supervising the process and reducing the influence of occasional wrong human corrections. This interactive approach has been validated for learning movement primitives with simulated arms with several degrees of freedom in reaching via-point movements, and also using real robots in such tasks as “writing characters” and the ball-in-a-cup game. Compared with standard reinforcement learning without human advice, the results show that the proposed method not only converges to higher rewards when learning movement primitives, but also that the learning is sped up by a factor of 4–40 times, depending on the task.

Reinforcement learning for improving autonomy of mobile robots in calibrating visual sensors

Fernando Nobre, Christoffer Heckman, Learning to calibrate: Reinforcement learning for guided calibration of visual–inertial rigs,. The International Journal of Robotics Research, 38(12–13), 1352–1374, DOI: 10.1177/0278364919844824.

We present a new approach to assisted intrinsic and extrinsic calibration with an observability-aware visual–inertial calibration system that guides the user through the calibration procedure by suggesting easy-to-perform motions that render the calibration parameters observable. This is done by identifying which subset of the parameter space is rendered observable with a rank-revealing decomposition of the Fisher information matrix, modeling calibration as a Markov decision process and using reinforcement learning to establish which discrete sequence of motions optimizes for the regression of the desired parameters. The goal is to address the assumption common to most calibration solutions: that sufficiently informative motions are provided by the operator. We do not make use of a process model and instead leverage an experience-based approach that is broadly applicable to any platform in the context of simultaneous localization and mapping. This is a step in the direction of long-term autonomy and “power-on-and-go” robotic systems, making repeatable and reliable calibration accessible to the non-expert operator.

A kind of reinforcement learning that decouples modelling from planning using Gaussian Processes for the former

Rakicevic, N. & Kormushev, P., Active learning via informed search in movement parameter space for efficient robot task learning and transfer. Auton Robot (2019) 43: 1917, DOI: 10.1007/s10514-019-09842-7.

Learning complex physical tasks via trial-and-error is still challenging for high-degree-of-freedom robots. Greatest challenges are devising a suitable objective function that defines the task, and the high sample complexity of learning the task. We propose a novel active learning framework, consisting of decoupled task model and exploration components, which does not require an objective function. The task model is specific to a task and maps the parameter space, defining a trial, to the trial outcome space. The exploration component enables efficient search in the trial-parameter space to generate the subsequent most informative trials, by simultaneously exploiting all the information gained from previous trials and reducing the task model’s overall uncertainty. We analyse the performance of our framework in a simulation environment and further validate it on a challenging bimanual-robot puck-passing task. Results show that the robot successfully acquires the necessary skills after only 100 trials without any prior information about the task or target positions. Decoupling the framework’s components also enables efficient skill transfer to new environments which is validated experimentally.

Human interaction with the RL process

Celemin, C., Ruiz-del-Solar, J. & Kober, A fast hybrid reinforcement learning framework with human corrective feedback, Auton Robot (2019) 43: 1173, DOI: 10.1007/s10514-018-9786-6.

Reinforcement Learning agents can be supported by feedback from human teachers in the learning loop that guides the learning process. In this work we propose two hybrid strategies of Policy Search Reinforcement Learning and Interactive Machine Learning that benefit from both sources of information, the cost function and the human corrective feedback, for accelerating the convergence and improving the final performance of the learning process. Experiments with simulated and real systems of balancing tasks and a 3 DoF robot arm validate the advantages of the proposed learning strategies: (i) they speed up the convergence of the learning process between 3 and 30 times, saving considerable time during the agent adaptation, and (ii) they allow including non-expert feedback because they have low sensibility to erroneous human advice.

Improving Q-learning by initialization of the Q matrix and a nice related work of that approach

Ee Soong Low, Pauline Ong, Kah Chun Cheah, Solving the optimal path planning of a mobile robot using improved Q-learning, Robotics and Autonomous Systems, Volume 115, 2019, Pages 143-161, DOI: 10.1016/j.robot.2019.02.013.

Q-learning, a type of reinforcement learning, has gained increasing popularity in autonomous mobile robot path planning recently, due to its self-learning ability without requiring a priori model of the environment. Yet, despite such advantage, Q-learning exhibits slow convergence to the optimal solution. In order to address this limitation, the concept of partially guided Q-learning is introduced wherein, the flower pollination algorithm (FPA) is utilized to improve the initialization of Q-learning. Experimental evaluation of the proposed improved Q-learning under the challenging environment with a different layout of obstacles shows that the convergence of Q-learning can be accelerated when Q-values are initialized appropriately using the FPA. Additionally, the effectiveness of the proposed algorithm is validated in a real-world experiment using a three-wheeled mobile robot.

RL and Inverse RL based on MDPs for autonomous vehicles, and a nice historical review of the topic of a.v.

Changxi You, Jianbo Lu, Dimitar Filev, Panagiotis Tsiotras, Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning, Robotics and Autonomous Systems, Volume 114, 2019, Pages 1-18 DOI: 10.1016/j.robot.2019.01.003.

Autonomous vehicles promise to improve traffic safety while, at the same time, increase fuel efficiency and reduce congestion. They represent the main trend in future intelligent transportation systems. This paper concentrates on the planning problem of autonomous vehicles in traffic. We model the interaction between the autonomous vehicle and the environment as a stochastic Markov decision process (MDP) and consider the driving style of an expert driver as the target to be learned. The road geometry is taken into consideration in the MDP model in order to incorporate more diverse driving styles. The desired, expert-like driving behavior of the autonomous vehicle is obtained as follows: First, we design the reward function of the corresponding MDP and determine the optimal driving strategy for the autonomous vehicle using reinforcement learning techniques. Second, we collect a number of demonstrations from an expert driver and learn the optimal driving strategy based on data using inverse reinforcement learning. The unknown reward function of the expert driver is approximated using a deep neural-network (DNN). We clarify and validate the application of the maximum entropy principle (MEP) to learn the DNN reward function, and provide the necessary derivations for using the maximum entropy principle to learn a parameterized feature (reward) function. Simulated results demonstrate the desired driving behaviors of an autonomous vehicle using both the reinforcement learning and inverse reinforcement learning techniques.

A developmental architecture for sensory-motor skills based on predictors, and a nice state-of-the-art in cognitive architectures for sensory-motor skill learning

E. Wieser and G. Cheng, A Self-Verifying Cognitive Architecture for Robust Bootstrapping of Sensory-Motor Skills via Multipurpose Predictors, IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1081-1095, DOI: 10.1109/TCDS.2018.2871857.

The autonomous acquisition of sensory-motor skills along multiple developmental stages is one of the current challenges in robotics. To this end, we propose a new developmental cognitive architecture that combines multipurpose predictors and principles of self-verification for the robust bootstrapping of sensory-motor skills. Our architecture operates with loops formed by both mental simulation of sensory-motor sequences and their subsequent physical trial on a robot. During these loops, verification algorithms monitor the predicted and the physically observed sensory-motor data. Multiple types of predictors are acquired through several developmental stages. As a result, the architecture can select and plan actions, adapt to various robot platforms by adjusting proprioceptive feedback, predict the risk of self-collision, learn from a previous interaction stage by validating and extracting sensory-motor data for training the predictor of a subsequent stage, and finally acquire an internal representation for evaluating the performance of its predictors. These cognitive capabilities in turn realize the bootstrapping of early hand-eye coordination and its improvement. We validate the cognitive capabilities experimentally and, in particular, show an improvement of reaching as an example skill.

A definition of emergence and its application to emergence in robots

R. L. Sturdivant and E. K. P. Chong, The Necessary and Sufficient Conditions for Emergence in Systems Applied to Symbol Emergence in Robots, IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1035-1042, DOI: 10.1109/TCDS.2017.2731361.

A conceptual model for emergence with downward causation is developed. In addition, the necessary and sufficient conditions are identified for a phenomenon to be considered emergent in a complex system. It is then applied to symbol emergence in robots. This paper is motivated by the usefulness of emergence to explain a wide variety of phenomena in systems, and cognition in natural and artificial creatures. Downward causation is shown to be a critical requirement for potentially emergent phenomena to be considered actually emergent. Models of emergence with and without downward causation are described and how weak emergence can include downward causation. A process flow is developed for distinguishing emergence from nonemergence based upon the application of reductionism and detection of downward causation. Examples are shown for applying the necessary and sufficient conditions to filter out actually emergent phenomena from nonemergent ones. Finally, this approach for detecting emergence is applied to complex projects and symbol emergence in robots.