Category Archives: Robotics

Taking into account explicitly the dynamics of the environment, and in particular the diverse frequencies of changes, for mobile robot mapping

T. Krajník, J. P. Fentanes, J. M. Santos and T. Duckett, FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments, IEEE Transactions on Robotics, vol. 33, no. 4, pp. 964-977, DOI: 10.1109/TRO.2017.2665664.

We present a new approach to long-term mobile robot mapping in dynamic indoor environments. Unlike traditional world models that are tailored to represent static scenes, our approach explicitly models environmental dynamics. We assume that some of the hidden processes that influence the dynamic environment states are periodic and model the uncertainty of the estimated state variables by their frequency spectra. The spectral model can represent arbitrary timescales of environment dynamics with low memory requirements. Transformation of the spectral model to the time domain allows for the prediction of the future environment states, which improves the robot’s long-term performance in changing environments. Experiments performed over time periods of months to years demonstrate that the approach can efficiently represent large numbers of observations and reliably predict future environment states. The experiments indicate that the model’s predictive capabilities improve mobile robot localization and navigation in changing environments.

POMDPs with multicriteria in the cost to optimize – a hierarchical approach

Seyedshams Feyzabadi, Stefano Carpin, Planning using hierarchical constrained Markov decision processes, Autonomous Robots, Volume 41, Issue 8, pp 1589–1607, DOI: 10.1007/s10514-017-9630-4.

Constrained Markov decision processes offer a principled method to determine policies for sequential stochastic decision problems where multiple costs are concurrently considered. Although they could be very valuable in numerous robotic applications, to date their use has been quite limited. Among the reasons for their limited adoption is their computational complexity, since policy computation requires the solution of constrained linear programs with an extremely large number of variables. To overcome this limitation, we propose a hierarchical method to solve large problem instances. States are clustered into macro states and the parameters defining the dynamic behavior and the costs of the clustered model are determined using a Monte Carlo approach. We show that the algorithm we propose to create clustered states maintains valuable properties of the original model, like the existence of a solution for the problem. Our algorithm is validated in various planning problems in simulation and on a mobile robot platform, and we experimentally show that the clustered approach significantly outperforms the non-hierarchical solution while experiencing only moderate losses in terms of objective functions.

A new robotic middleware that exposes “resources” to the network instead of functionality

Marcus V. D. VelosoJosé Tarcísio C. FilhoGuilherme A. Barreto, SOM4R: a Middleware for Robotic Applications Based on the Resource-Oriented Architecture, Journal of Intelligent & Robotic Systems, Volume 87, Issue 3–4, pp 487–506, DOI: 10.1007/s10846-017-0504-y.

This paper relies on the resource-oriented architecture (ROA) to propose a middleware that shares resources (sensors, actuators and services) of one or more robots through the TCP/IP network, providing greater efficiency in the development of software applications for robotics. The proposed middleware consists of a set of web services that provides access to representational state of resources through simple and high-level interfaces to implement a software architecture for autonomous robots. The benefits of the proposed approach are manifold: i) full abstraction of complexity and heterogeneity of robotic devices through web services and uniform interfaces, ii) scalability and independence of the operating system and programming language, iii) secure control of resources for local or remote applications through the TCP/IP network, iv) the adoption of the Resource Description Framework (RDF), XML language and HTTP protocol, and v) dynamic configuration of the connections between services at runtime. The middleware was developed using the Linux operating system (Ubuntu), with some applications built as proofs of concept for the Android operating system. The architecture specification and the open source implementation of the proposed middleware are detailed in this article, as well as applications for robot remote control via wireless networks, voice command functionality, and obstacle detection and avoidance.

Real-time modification of user inputs in the teleoperation of an UAV in order to avoid obstacles with a reactive algorithm, transparently from the user control

Daman Bareiss, Joseph R. Bourne & Kam K. Leang, On-board model-based automatic collision avoidance: application in remotely-piloted unmanned aerial vehicles, Auton Robot (2017) 41:1539–1554, DOI: 10.1007/s10514-017-9614-4.

This paper focuses on real-world implementation and verification of a local, model-based stochastic automatic collision avoidance algorithm, with application in
remotely-piloted (tele-operated) unmanned aerial vehicles (UAVs). Automatic collision detection and avoidance for tele-operated UAVs can reduce the workload of pilots to allow them to focus on the task at hand, such as searching for victims in a search and rescue scenario following a natural disaster. The proposed algorithm takes the pilot’s input and exploits the robot’s dynamics to predict the robot’s trajectory for determining whether a collision will occur. Using on-board sensors for obstacle detection, if a collision is imminent, the algorithm modifies the pilot’s input to avoid the collision while attempting to maintain the pilot’s intent. The algorithm is implemented using a low-cost on-board computer, flight-control system, and a two-dimensional laser illuminated detection and ranging sensor for obstacle detection along the trajectory of the robot. The sensor data is processed using a split-and-merge segmentation algorithm and an approximate Minkowski difference. Results from flight tests demonstrate the algorithm’s capabilities for teleoperated collision-free control of an experimental UAV.

Learning basic motion skills through modeling them as parameterized modules (learned by demonstration and babbling), and a nice state of the art of the development of motion skills

René Felix Reinhart, Autonomous exploration of motor skills by skill babbling, Auton Robot (2017) 41:1521–1537, DOI: 10.1007/s10514-016-9613-x.

Autonomous exploration of motor skills is a key capability of learning robotic systems. Learning motor skills can be formulated as inverse modeling problem, which targets at finding an inverse model that maps desired outcomes in some task space, e.g., via points of a motion, to appropriate actions, e.g., motion control policy parameters. In this paper, autonomous exploration of motor skills is achieved by incrementally learning inverse models starting from an initial demonstration. The algorithm is referred to as skill babbling, features sample-efficient learning, and scales to high-dimensional action spaces. Skill babbling extends ideas of goal-directed exploration, which organizes exploration in the space of goals. The proposed approach provides a modular framework for autonomous skill exploration by separating the learning of the inverse model from the exploration mechanism and a model of achievable targets, i.e. the workspace. The effectiveness of skill babbling is demonstrated for a range of motor tasks comprising the autonomous bootstrapping of inverse kinematics and parameterized motion primitives.

Testbed for comparisons of different UWB sensors applied to localization

A. R. Jiménez Ruiz and F. Seco Granja, “Comparing Ubisense, BeSpoon, and DecaWave UWB Location Systems: Indoor Performance Analysis,” in IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 8, pp. 2106-2117, Aug. 2017.DOI: 10.1109/TIM.2017.2681398.

Most ultrawideband (UWB) location systems already proposed for position estimation have only been individually evaluated for particular scenarios. For a fair performance comparison among different solutions, a common evaluation scenario would be desirable. In this paper, we compare three commercially available UWB systems (Ubisense, BeSpoon, and DecaWave) under the same experimental conditions, in order to do a critical performance analysis. We include the characterization of the quality of the estimated tag-to-sensor distances in an indoor industrial environment. This testing space includes areas under line-of-sight (LOS) and diverse non-LOS conditions caused by the reflection, propagation, and the diffraction of the UWB radio signals across different obstacles. The study also includes the analysis of the estimated azimuth and elevation angles for the Ubisense system, which is the only one that incorporates this feature using an array antenna at each sensor. Finally, we analyze the 3-D positioning estimation performance of the three UWB systems using a Bayesian filter implemented with a particle filter and a measurement model that takes into account bad range measurements and outliers. A final conclusion is drawn about which system performs better under these industrial conditions.

A method to model trajectories that captures its essential parameters (for comparisons, clustering, etc.)

W. Lin et al., “A Tube-and-Droplet-Based Approach for Representing and Analyzing Motion Trajectories,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1489-1503, Aug. 1 2017.DOI: 10.1109/TPAMI.2016.2608884.

Trajectory analysis is essential in many applications. In this paper, we address the problem of representing motion trajectories in a highly informative way, and consequently utilize it for analyzing trajectories. Our approach first leverages the complete information from given trajectories to construct a thermal transfer field which provides a context-rich way to describe the global motion pattern in a scene. Then, a 3D tube is derived which depicts an input trajectory by integrating its surrounding motion patterns contained in the thermal transfer field. The 3D tube effectively: 1) maintains the movement information of a trajectory, 2) embeds the complete contextual motion pattern around a trajectory, 3) visualizes information about a trajectory in a clear and unified way. We further introduce a droplet-based process. It derives a droplet vector from a 3D tube, so as to characterize the high-dimensional 3D tube information in a simple but effective way. Finally, we apply our tube-and-droplet representation to trajectory analysis applications including trajectory clustering, trajectory classification & abnormality detection, and 3D action recognition. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our approach.

Several strategies for exploring unknown environments based on graphs extracted from Voronoi diagrams

E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos, L. Petrou, Cost-Based Target Selection Techniques Towards Full Space Exploration and Coverage for USAR applications in a Priori Unknown Environments, J Intell Robot Syst (2017) 87:313–340, DOI: 10.1007/s10846-016-0434-0.

Full coverage and exploration of an environment is essential in robot rescue operations where victim identification is required. Three methods of target selection towards full exploration and coverage of an unknown space oriented for Urban Search and Rescue (USAR) applications have been developed. These are the Selection of the closest topological node, the Selection of the minimum cost topological node and the Selection of the minimum cost sub-graph. All methods employ a topological graph extracted from the Generalized Voronoi Diagram (GVD), in order to select the next best target during exploration. The first method utilizes a distance metric for determining the next best target whereas the Selection of the minimum cost topological node method assigns four different weights on the graph’s nodes, based on certain environmental attributes. The Selection of the minimum cost sub-graph uses a similar technique, but instead of single nodes, sets of graph nodes are examined. In addition, a modification of A* algorithm for biased path creation towards uncovered areas, aiming at a faster spatial coverage, is introduced. The proposed methods’ performance is verified by experiments conducted in two heterogeneous simulated environments. Finally, the results are compared with two common exploration methods.

Prediction of changes in behaviors of cars for autohomous driving, based on POMDPs made efficient by separation of multiple policies

Enric Galceran, Alexander G. Cunningham, Ryan M. Eustice, Edwin Olson,Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: Theory and experiment, Autonomous Robots, August 2017, Volume 41, Issue 6, pp 1367–1382, DOI: 10.1007/s10514-017-9619-z.

This paper reports on an integrated inference and decision-making approach for autonomous driving that models vehicle behavior for both our vehicle and nearby vehicles as a discrete set of closed-loop policies. Each policy captures a distinct high-level behavior and intention, such as driving along a lane or turning at an intersection. We first employ Bayesian changepoint detection on the observed history of nearby cars to estimate the distribution over potential policies that each nearby car might be executing. We then sample policy assignments from these distributions to obtain high-likelihood actions for each participating vehicle, and perform closed-loop forward simulation to predict the outcome for each sampled policy assignment. After evaluating these predicted outcomes, we execute the policy with the maximum expected reward value. We validate behavioral prediction and decision-making using simulated and real-world experiments.

Interesting review of approaches to visually detect loop closings in robotics, and a novel, very efficient method that is independent on the image representation and based on not using the typical l2 norm (least squares), which leads to dense optimization problems

Yasir Latif, Guoquan Huang, John Leonard, José Neira, Sparse optimization for robust and efficient loop closing, Robotics and Autonomous Systems, Volume 93, July 2017, Pages 13-26, ISSN 0921-8890,DOI: 10.1016/j.robot.2017.03.016.

It is essential for a robot to be able to detect revisits or loop closures for long-term visual navigation. A key insight explored in this work is that the loop-closing event inherently occurs sparsely, i.e., the image currently being taken matches with only a small subset (if any) of previous images. Based on this observation, we formulate the problem of loop-closure detection as a sparse, convex
ℓ 1 -minimization problem. By leveraging fast convex optimization techniques, we are able to efficiently find loop closures, thus enabling real-time robot navigation. This novel formulation requires no offline dictionary learning, as required by most existing approaches, and thus allows online incremental operation. Our approach ensures a unique hypothesis by choosing only a single globally optimal match when making a loop-closure decision. Furthermore, the proposed formulation enjoys a flexible representation with no restriction imposed on how images should be represented, while requiring only that the representations are “close” to each other when the corresponding images are visually similar. The proposed algorithm is validated extensively using real-world datasets.