Category Archives: Robotics

Shared autonomy where the target is predicted with POMDPs to cope with uncertain predictions

Shervin Javdani, Henny Admoni, Stefania Pellegrinelli, Siddhartha S. Srinivasa, and J. Andrew Bagnell Shared autonomy via hindsight optimization for teleoperation and teaming, The International Journal of Robotics Research Vol 37, Issue 7, pp. 717 – 742 DOI: 10.1177/0278364918776060.

In shared autonomy, a user and autonomous system work together to achieve shared goals. To collaborate effectively, the autonomous system must know the user’s goal. As such, most prior works follow a predict-then-act model, first predicting the user’s goal with high confidence, then assisting given that goal. Unfortunately, confidently predicting the user’s goal may not be possible until they have nearly achieved it, causing predict-then-act methods to provide little assistance. However, the system can often provide useful assistance even when confidence for any single goal is low (e.g. move towards multiple goals). In this work, we formalize this insight by modeling shared autonomy as a partially observable Markov decision process (POMDP), providing assistance that minimizes the expected cost-to-go with an unknown goal. As solving this POMDP optimally is intractable, we use hindsight optimization to approximate. We apply our framework to both shared-control teleoperation and human–robot teaming. Compared with predict-then-act methods, our method achieves goals faster, requires less user input, decreases user idling time, and results in fewer user–robot collisions.

A new mathematical formulation of manipulator motion that simplifies dynamics and kinematics

Labbé, M. & Michaud, F., Comprehensive theory of differential kinematics and dynamics towards extensive motion optimization framework, The International Journal of Robotics Research First Published May 20, 2018 DOI: 10.1177/0278364918772893.

This paper presents a novel unified theoretical framework for differential kinematics and dynamics for the optimization of complex robot motion. By introducing an 18×18 comprehensive motion transformation matrix, the forward differential kinematics and dynamics, including velocity and acceleration, can be written in a simple chain product similar to an ordinary rotational matrix. This formulation enables the analytical computation of derivatives of various physical quantities (e.g. link velocities, link accelerations, or joint torques) with respect to joint coordinates, velocities and accelerations for a robot trajectory in an efficient manner (O(NJ), where NJ is the number of the robot’s degree of freedom), which is useful for motion optimization. Practical implementation of gradient computation is demonstrated together with simulation results of robot motion optimization to validate the effectiveness of the proposed framework.

Using short- and long-term memories in SLAM

Labbé, M. & Michaud, F., Long-term online multi-session graph-based SPLAM with memory management, Auton Robot (2018) 42: 1133. DOI: 10.1007/s10514-017-9682-5.

For long-term simultaneous planning, localization and mapping (SPLAM), a robot should be able to continuously update its map according to the dynamic changes of the environment and the new areas explored. With limited onboard computation capabilities, a robot should also be able to limit the size of the map used for online localization and mapping. This paper addresses these challenges using a memory management mechanism, which identifies locations that should remain in a Working Memory (WM) for online processing from locations that should be transferred to a Long-Term Memory (LTM). When revisiting previously mapped areas that are in LTM, the mechanism can retrieve these locations and place them back in WM for online SPLAM. The approach is tested on a robot equipped with a short-range laser rangefinder and a RGB-D camera, patrolling autonomously 10.5 km in an indoor environment over 11 sessions while having encountered 139 people.

A novel approach to avoid the minima problem in potential fields navigation

Fedele, G., D’Alfonso, L., Chiaravalloti, F. et al., Obstacles Avoidance Based on Switching Potential Functions, J Intell Robot Syst (2018) 90: 387. DOI: 10.1007/s10846-017-0687-2.

In this paper, a novel path planning and obstacles avoidance method for a mobile robot is proposed. This method makes use of a switching strategy between the attractive potential of the target and a new helicoidal potential field which allows to bypass an obstacle by driving the robot around it. The new technique aims at overcoming the local minima problems of the well-known artificial potentials method, caused by the summation of two (or more) potential fields. In fact, in the proposed approach, only a single potential is used at a time. The resulting proposed technique uses only local information and ensures high robustness, in terms of achieved performance and computational complexity, w.r.t. the number of obstacles. Numerical simulations, together with comparisons with existing methods, confirm a very robust behavior of the method, also in the case of a framework with multiple obstacles.

Faster long-term SLAM through direct use of Lie groups in filtering

Kruno Lenac, Josip Ćesić, Ivan Marković, and Ivan Petrović, Exactly sparse delayed state filter on Lie groups for long-term pose graph SLAM, The International Journal of Robotics Research Vol 37, Issue 6, pp. 585 – 610 DOI: 10.1177/0278364918767756.

In this paper we propose a simultaneous localization and mapping (SLAM) back-end solution called the exactly sparse delayed state filter on Lie groups (LG-ESDSF). We derive LG-ESDSF and demonstrate that it retains all the good characteristics of the classic Euclidean ESDSF, the main advantage being the exact sparsity of the information matrix. The key advantage of LG-ESDSF in comparison with the classic ESDSF lies in the ability to respect the state space geometry by negotiating uncertainties and employing filtering equations directly on Lie groups. We also exploit the special structure of the information matrix in order to allow long-term operation while the robot is moving repeatedly through the same environment. To prove the effectiveness of the proposed SLAM solution, we conducted extensive experiments on two different publicly available datasets, namely the KITTI and EuRoC datasets, using two front-ends: one based on the stereo camera and the other on the 3D LIDAR. We compare LG-ESDSF with the general graph optimization framework (g2o) when coupled with the same front-ends. Similarly to g2o the proposed LG-ESDSF is front-end agnostic and the comparison demonstrates that our solution can match the accuracy of g2o, while maintaining faster computation times. Furthermore, the proposed back-end coupled with the stereo camera front-end forms a complete visual SLAM solution dubbed LG-SLAM. Finally, we evaluated LG-SLAM using the online KITTI protocol and at the time of writing it achieved the second best result among the stereo odometry solutions and the best result among the tested SLAM algorithms.

Shared autonomy in robot teleoperation where the robot learns the user’s skills to adapt to them

Enayati, N., Ferrigno, G. & De Momi, E. Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method, Auton Robot (2018) 42: 997, DOI: 10.1007/s10514-017-9675-4.

This work proposes a shared-control tele-operation framework that adapts its cooperative properties to the estimated skill level of the operator. It is hypothesized that different aspects of an operator’s performance in executing a tele-operated path tracking task can be assessed through conventional machine learning methods using motion-based and task-related features. To identify performance measures that capture motor skills linked to the studied task, an experiment is conducted where users new to tele-operation, practice towards motor skill proficiency in 7 training sessions. A set of classifiers are then learned from the acquired data and selected features, which can generate a skill profile that comprises estimations of user’s various competences. Skill profiles are exploited to modify the behavior of the assistive robotic system accordingly with the objective of enhancing user experience by preventing unnecessary restriction for skilled users. A second experiment is implemented in which novice and expert users execute the path tracking on different pathways while being assisted by the robot according to their estimated skill profiles. Results validate the skill estimation method and hint at feasibility of shared-control customization in tele-operated path tracking.

Socially acceptable collision avoidance

Haoan Wang, Antonio Tota, Bilin Aksun-Guvenc, Levent Guvenc Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method, Mechatronics, Volume 50, 2018, Pages 341-355, DOI: 10.1016/j.mechatronics.2017.11.009.

This paper presents the real time implementation of socially acceptable collision avoidance using the elastic band method for low speed autonomous shuttles operating in high pedestrian density environments. The modeling and validation of the research autonomous vehicle used in the experimental implementation is presented first, followed by the details of the Hardware-In-the-Loop connected and autonomous vehicle simulator used. The socially acceptable collision avoidance algorithm is formulated using the elastic band method as an online, local path modification algorithm. Parameter space based robust feedback plus feedforward steering controller design is used. Model-in-the-loop, Hardware-In-the-Loop and road testing in a proving ground are used to demonstrate the effectiveness of the real time implementation of the elastic band based socially acceptable collision avoidance method of this paper.

Omnidirectional localization

Milad Ramezani, Kourosh Khoshelham, Clive Fraser, Pose estimation by Omnidirectional Visual-Inertial Odometry,Robotics and Autonomous Systems,
Volume 105, 2018, Pages 26-37, DOI: 10.1016/j.robot.2018.03.007.

In this paper, a novel approach to ego-motion estimation is proposed based on visual and inertial sensors, named Omnidirectional Visual-Inertial Odometry (OVIO). The proposed approach combines omnidirectional visual features with inertial measurements within the Multi-State Constraint Kalman Filter (MSCKF). In contrast with other visual inertial odometry methods that use visual features captured by perspective cameras, the proposed approach utilizes spherical images obtained by an omnidirectional camera to obtain more accurate estimates of the position and orientation of the camera. Because the standard perspective model is unsuitable for omnidirectional cameras, a measurement model on a plane tangent to the unit sphere rather than on the image plane is defined. The key hypothesis of OVIO is that a wider field of view allows the incorporation of more visual features from the surrounding environment, thereby improving the accuracy and robustness of the ego-motion estimation. Moreover, by using an omnidirectional camera, a situation where there is not enough texture is less likely to arise. Experimental evaluation of OVIO using synthetic and real video sequences captured by a fish-eye camera in both indoor and outdoor environments shows the superior performance of the proposed OVIO as compared to the MSCKF using a perspective camera in both positioning and attitude estimation.

Dynamic and efficient occupancy mapping

Vitor Guizilini and Fabio Ramos, Towards real-time 3D continuous occupancy mapping using Hilbert maps, The International Journal of Robotics Research
Vol 37, Issue 6, pp. 566 – 584, DOI: 10.1177/0278364918771476.

The ability to model the surrounding space and determine which areas are occupied is of key importance in many robotic applications, ranging from grasping and manipulation to path planning and obstacle avoidance. Occupancy modeling is often hindered by several factors, such as: real-time constraints, that require quick updates and access to estimates; quality of available data, that may contain gaps and partial occlusions; and memory requirements, especially for large-scale environments. In this work we propose a novel framework that elegantly addresses all these issues, by producing an efficient non-stationary continuous occupancy function that can be efficiently queried at arbitrary resolutions. Furthermore, we introduce techniques that allow the learning of individual features for different areas of the input space, that are better able to model its contained information and promote a higher-level understanding of the observed scene. Experimental tests were conducted on both simulated and real large-scale datasets, showing how the proposed framework rivals current state-of-the-art techniques in terms of computational speed while achieving a substantial decrease (of orders of magnitude) in memory requirements and demonstrating better interpolative powers, that are able to smooth out sparse and noisy information.

A nice analysis of the particularities of deep learning when applied to robotics, where the need to act is principal (unlike in other disciplines such as computer vision)

Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, and Peter Corke, The limits and potentials of deep learning for robotics, The International Journal of Robotics Research Vol 37, Issue 4-5, pp. 405 – 420, DOI: 10.1177/0278364918770733.

The application of deep learning in robotics leads to very specific problems and research questions that are typically not addressed by the computer vision and machine learning communities. In this paper we discuss a number of robotics-specific learning, reasoning, and embodiment challenges for deep learning. We explain the need for better evaluation metrics, highlight the importance and unique challenges for deep robotic learning in simulation, and explore the spectrum between purely data-driven and model-driven approaches. We hope this paper provides a motivating overview of important research directions to overcome the current limitations, and helps to fulfill the promising potentials of deep learning in robotics.

Some quotes beyond the abstract:

Deep learning systems, e.g. for classification or detection, typically return scores from their softmax layers that are proportional to the system’s confidence, but are not calibrated probabilities, and therefore not useable in a Bayesian sensor fusion framework

If, for example, an object detection system is fooled by data outside of its training data distribution (Goodfellow et al., 2014; Nguyen et al., 2015a), the consequences for a robot acting on false, but high-confidence detections can be catastrophic

As the robot moves in its environment, the camera will observe the scene from different viewpoints, which poses both challenges and opportunities to a robotic vision system […] One of the biggest advantages robotic vision can draw from its embodiment is the potential to control the camera, move it, and change its viewpoint to improve its perception or gather additional information about the scene. This is in stark contrast to most computer vision scenarios […] As an extension of active vision, a robotic system could purposefully manipulate the scene to aid its perception

In his influential 1867 book on physiological optics, Von Helmholtz (1867) formulated the idea that humans use unconscious reasoning, inference or conclusion, when processing visual information. Since then, psychologists have devised various experiments to investigate these unconscious mechanisms (Goldstein and Brockmole, 2016), modernized Helmholtz’s original ideas (Rock, 1983), and reformulated them in the framework of Bayesian inference (Kersten et al., 2004).

The properties of model-based and deep-learned approaches can be measured along multiple dimensions, including the kind of representations used for reasoning, how generally applicable their solutions are, how robust they are in real-world settings, how efficiently they make use of data, and how computationally efficient they are during operation. Model-based approaches often rely on explicit models of objects and their shape, surface, and mass properties, and use these to predict and control motion through time. In deep learning, models are typically implicitly encoded via networks and their parameters. As a consequence, model-based approaches have wide applicability, since the physics underlying them are universal. However, at the same time, the parameters of these models are difficult to estimate from perception, resulting in rather brittle performance operating only in local basins of convergence. Deep learning, on the other hand, enables highly robust performance when trained on sufficiently large data sets that are representative of the operating regime of the system. However, the implicit models learned by current deep learning techniques do not have the general applicability of physics-based reasoning. Model-based approaches are significantly more data efficient, related to their smaller number of parameters. The optimizations required for model-based approaches can be performed efficiently, but the basin of convergence can be rather small. In contrast, deep-learned solutions are often very fast and can have very large basins of convergence. However, they do not perform well if applied in a regime outside the training data