Kan Xie, Qianqian Cai, Minyue Fu, A fast clock synchronization algorithm for wireless sensor networks, Automatica, Volume 92, 2018, Pages 133-142, DOI: 10.1016/j.automatica.2018.03.004.
This paper proposes a novel clock synchronization algorithm for wireless sensor networks (WSNs). The algorithm is derived using a fast finite-time average consensus idea, and is fully distributed, meaning that each node relies only on its local clock readings and reading announcements from its neighbours. For networks with an acyclic graph, the algorithm converges in only d iterations for clock rate synchronization and another d iterations for clock offset synchronization, where d is the graph diameter. The algorithm enjoys low computational and communicational complexities and robustness against transmission adversaries. Each node can execute the algorithm asynchronously without the need for global coordination. Due to its fast convergence, the algorithm is most suitable for large-scale WSNs. For WSNs with a cyclic graph, a fast distributed depth-first-search (DFS) algorithm can be applied first to form a spanning tree before applying the proposed synchronization algorithm.