Tag Archives: Task Planning

A new approach to solve POMDP-like problems through gradient descent and optimal control

Vadim Indelman, Luca Carlone, Frank Dellaert, Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments, The International Journal of Robotics Research, vol. 34 no. 7, pp. 849-882, DOI: 10.1177/0278364914561102.

We investigate the problem of planning under uncertainty, with application to mobile robotics. We propose a probabilistic framework in which the robot bases its decisions on the generalized belief, which is a probabilistic description of its own state and of external variables of interest. The approach naturally leads to a dual-layer architecture: an inner estimation layer, which performs inference to predict the outcome of possible decisions; and an outer decisional layer which is in charge of deciding the best action to undertake. Decision making is entrusted to a model predictive control (MPC) scheme. The formulation is valid for general cost functions and does not discretize the state or control space, enabling planning in continuous domain. Moreover, it allows to relax the assumption of maximum likelihood observations: predicted measurements are treated as random variables, and binary random variables are used to model the event that a measurement is actually taken by the robot. We successfully apply our approach to the problem of uncertainty-constrained exploration, in which the robot has to perform tasks in an unknown environment, while maintaining localization uncertainty within given bounds. We present an extensive numerical analysis of the proposed approach and compare it against related work. In practice, our planning approach produces smooth and natural trajectories and is able to impose soft upper bounds on the uncertainty. Finally, we exploit the results of this analysis to identify current limitations and show that the proposed framework can accommodate several desirable extensions.

Survey of Hierarchical Task Planning

Ilche Georgievski, Marco Aiello, 2015, HTN planning: Overview, comparison, and beyond, Artificial Intelligence, Volume 222, May 2015, Pages 124-156, ISSN 0004-3702, DOI: 10.1016/j.artint.2015.02.002.

Hierarchies are one of the most common structures used to understand and conceptualise the world. Within the field of Artificial Intelligence (AI) planning, which deals with the automation of world-relevant problems, Hierarchical Task Network (HTN) planning is the branch that represents and handles hierarchies. In particular, the requirement for rich domain knowledge to characterise the world enables HTN planning to be very useful, and also to perform well. However, the history of almost 40 years obfuscates the current understanding of HTN planning in terms of accomplishments, planning models, similarities and differences among hierarchical planners, and its current and objective image. On top of these issues, the ability of hierarchical planning to truly cope with the requirements of real-world applications has been often questioned. As a remedy, we propose a framework-based approach where we first provide a basis for defining different formal models of hierarchical planning, and define two models that comprise a large portion of HTN planners. Second, we provide a set of concepts that helps in interpreting HTN planners from the aspect of their search space. Then, we analyse and compare the planners based on a variety of properties organised in five segments, namely domain authoring, expressiveness, competence, computation and applicability. Furthermore, we select Web service composition as a real-world and current application, and classify and compare the approaches that employ HTN planning to solve the problem of service composition. Finally, we conclude with our findings and present directions for future work. In summary, we provide a novel and comprehensive viewpoint on a core AI planning technique.