Tag Archives: Smooth Motion

Achieving smooth motion in robotic manipulators on-line through their controller, and a nice state-of-the-art of the problem of smooth motion

Yu-Sheng Lu, Yi-Yi Lin, Smooth motion control of rigid robotic manipulators with constraints on high-order kinematic variables, Mechatronics,
Volume 49, 2018, Pages 11-25, DOI: 10.1016/j.mechatronics.2017.11.003.

This paper presents a design for a jerk-constrained, time-optimal controller (JCTOC) that allows the smooth control of rigid robotic manipulators, in which time-optimal output responses are attained with confined jerk. A snap-constrained, time-optimal control (SCTOC) scheme is also proposed to produce even smoother output responses that are time-optimal, with a constraint on the maximum admissible snap. In contrast to conventional path-planning approaches that involve a bounded jerk/snap, the proposed JCTOC and SCTOC practically limit the corresponding high-order kinematic variables in real time. Using the structure of the computed torque control, the PD control, the JCTOC and the SCTOC are experimentally compared in terms of specific performance indices, including a chatter index, which is used to measure the unevenness of a signal.