Tag Archives: Place Recognition

Automatic hierarchization for the recognition of places in images

Chen Fan, Zetao Chen, Adam Jacobson, Xiaoping Hu, Michael Milford, Biologically-inspired visual place recognition with adaptive multiple scales,Robotics and Autonomous Systems, Volume 96, 2017, Pages 224-237, DOI: 10.1016/j.robot.2017.07.015.

In this paper we present a novel adaptive multi-scale system for performing visual place recognition. Unlike recent previous multi-scale place recognition systems that use manually pre-fixed scales, we present a system that adaptively selects the spatial scales. This approach differs from previous multi-scale methods, where place recognition is performed through a non-optimized distance metric in a fixed and pre-determined scale space. Instead, we learn an optimized distance metric which creates a new recognition space for clustering images with similar features while separating those with different features. Consequently, the method exploits the natural spatial scales present in the operating environment. With these adaptive scales, a hierarchical recognition mechanism with multiple parallel channels is then proposed. Each channel performs place recognition from a coarse match to a fine match. We present specific techniques for training each channel to recognize places at varying spatial scales and for combining the place recognition hypotheses from these parallel channels. We also conduct a systematic series of experiments and parameter studies that determine the effect on performance of using different numbers of combined recognition channels. The results demonstrate that the adaptive multi-scale approach outperforms the previous fixed multi-scale approach and is capable of producing better than state of the art performance compared to existing robotic navigation algorithms. The system complexity is linear in the number of places in the reference static map and can realize the online place recognition in mobile robotics on typical dataset sizes We analyze the results and provide theoretical analysis of the performance improvements. Finally, we discuss interesting insights gained with respect to future work in robotics and neuroscience in this area.

Very interesting survey on visual place recognition, including historical background, physio-psychological bases and a definition of “place” in robotics

S. Lowry et al., Visual Place Recognition: A Survey, in IEEE Transactions on Robotics, vol. 32, no. 1, pp. 1-19, Feb. 2016. DOI: 10.1109/TRO.2015.2496823.

Visual place recognition is a challenging problem due to the vast range of ways in which the appearance of real-world places can vary. In recent years, improvements in visual sensing capabilities, an ever-increasing focus on long-term mobile robot autonomy, and the ability to draw on state-of-the-art research in other disciplines-particularly recognition in computer vision and animal navigation in neuroscience-have all contributed to significant advances in visual place recognition systems. This paper presents a survey of the visual place recognition research landscape. We start by introducing the concepts behind place recognition-the role of place recognition in the animal kingdom, how a “place” is defined in a robotics context, and the major components of a place recognition system. Long-term robot operations have revealed that changing appearance can be a significant factor in visual place recognition failure; therefore, we discuss how place recognition solutions can implicitly or explicitly account for appearance change within the environment. Finally, we close with a discussion on the future of visual place recognition, in particular with respect to the rapid advances being made in the related fields of deep learning, semantic scene understanding, and video description.