Tag Archives: Matlab

A remote Matlab laboratory for LTI system identification

Z. Lei, H. Zhou, W. Hu and G. -P. Liu, Teaching and Comprehensive Learning With Remote Laboratories and MATLAB for an Undergraduate System Identification Course, EEE Transactions on Education, vol. 65, no. 3, pp. 402-408, Aug. 2022 DOI: 10.1109/TE.2021.3123302.

Contribution: This article introduces the teaching and learning with remote laboratories and MATLAB for an undergraduate system identification (SI) course, which can be employed for students at the advanced level with a control background. Background: SI has been widely used in all engineering fields; thus, the SI course that includes complex theories, concepts, and formulas is crucial for engineering education. Constraints, such as time, space, cost, and maintenance work, pose limitations for conventional laboratories, and current remote laboratories may not offer experiences to enhance control-oriented practical skills. Intended Outcomes: The proposed teaching and learning using remote laboratories is intended to facilitate the understanding of theories and concepts, and enhance the ability of design and implementation of control algorithms, the conducting of experiments, data collecting, data analysis, and the conducting of SI with MATLAB. Application Design: In the classroom teaching, theoretical lectures regarding SI are delivered to students by the teacher, along with the classroom demonstration with the networked control system laboratory for online experimentation. Then, the laboratory work is required to be completed by the students using the remote laboratory. A tailored laboratory report is supposed to be handed in by each student after the experimentation. Findings: The effectiveness of the proposed method was evaluated through the analysis of student performance and student responses to surveys. The student performance analysis indicates that the application of the remote laboratories is effective, and the feedback from students shows that they can benefit from the application of remote laboratories, and they would like the remote laboratories to be expanded to other courses.

A MATLAB toolbox for controlling and programming KUKA robots and a list of robotics toolboxes

M. Safeea and P. Neto, KUKA Sunrise Toolbox: Interfacing Collaborative Robots With MATLAB, IEEE Robotics & Automation Magazine, vol. 26, no. 1, pp. 91-96, 2019 DOI: 10.1109/MRA.2018.2877776.

Collaborative robots are increasingly present in our lives. The KUKA LBR iiwa, equipped with the KUKA Sunrise.OS controller, is one example of a collaborative/sensitive robot. This tutorial presents the KUKA Sunrise Toolbox (KST), a MATLAB toolbox that interfaces with KUKA Sunrise.OS. KST contains functionalities for networking, soft control in real time, point-to-point motion, parameter setters/getters, general purpose, and physical interaction. It includes approximately 100 functions and runs on a remote computer connected with the KUKA Sunrise controller via Transmission Control Protocol/Internet Protocol (TCP/IP). The potentialities of the KST are demonstrated in nine application examples.

An interesting simulation educational software for control systems engineering based on controlling a quadrotor

S. Khan, M. H. Jaffery, A. Hanif and M. R. Asif, Teaching Tool for a Control Systems Laboratory Using a Quadrotor as a Plant in MATLAB, IEEE Transactions on Education, vol. 60, no. 4, pp. 249-256, DOI: 10.1109/TE.2017.2653762.

This paper presents a MATLAB-based application to teach the guidance, navigation, and control concepts of a quadrotor to undergraduate students, using a graphical user interface (GUI) and 3-D animations. The Simulink quadrotor model is controlled by a proportional integral derivative controller and a linear quadratic regulator controller. The GUI layout’s many components can be easily programmed to perform various experiments by considering the simulation of the quadrotor as a plant; it incorporates control systems (CS) fundamentals such as time domain response, transfer function and state-space form, pole-zero location, root locus, frequency domain response, steady-state error, position and disturbance response, controller design and tuning, unity, and the use of a Kalman filter as a feedback sensor. 3-D animations are used to display the quadrotor flying in any given condition selected by the user. For each simulation, users can view the output response in the form of 3-D animations, and can run time plots. The quadrotor educational tool (QET) helps students in the CS laboratory understand basic CS concepts. The QET was evaluated based on student feedback, grades, satisfaction, and interest in CS.