Tag Archives: Heavy-tailed Distributions

More robust KF through the use of skewed distributions

M. Bai, Y. Huang, B. Chen and Y. Zhang, A Novel Robust Kalman Filtering Framework Based on Normal-Skew Mixture Distribution, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 11, pp. 6789-6805, Nov. 2022 DOI: 10.1109/TSMC.2021.3098299.

In this article, a novel normal-skew mixture (NSM) distribution is presented to model the normal and/or heavy-tailed and/or skew nonstationary distributed noises. The NSM distribution can be formulated as a hierarchically Gaussian presentation by leveraging a Bernoulli distributed random variable. Based on this, a novel robust Kalman filtering framework can be developed utilizing the variational Bayesian method, where the one-step prediction and measurement-likelihood densities are modeled as NSM distributions. For implementation, several exemplary robust Kalman filters (KFs) are derived based on some specific cases of NSM distribution. The relationships between some existing robust KFs and the presented framework are also revealed. The superiority of the proposed robust Kalman filtering framework is validated by a target tracking simulation example.

Improving the estimation of the offset parameter of heavy-tailed distributions through the injection of noise

Y. Pan, F. Duan, F. Chapeau-Blondeau and D. Abbott, Noise Enhancement in Robust Estimation of Location, IEEE Transactions on Signal Processing, vol. 66, no. 8, pp. 1953-1966, DOI: 10.1109/TSP.2018.2802463.

In this paper, we investigate the noise benefits to maximum likelihood type estimators (M-estimator) for the robust estimation of a location parameter. Two distinct noise benefits are shown to be accessible under these conditions. With symmetric heavy-tailed noise distributions, the asymptotic efficiency of the estimation can be enhanced by injecting extra noise into the M-estimators. With an asymmetric contaminated noise model having a convex cumulative distribution function, we demonstrate that addition of noise can reduce the maximum bias of the median estimator. These findings extend the analysis of stochastic resonance effects for noise-enhanced signal and information processing.