Tag Archives: Graph Search

Path planning by merging random sampling (RRT) with informed heuristics (A*)

Jonathan D Gammell, Timothy D Barfoot, Siddhartha S Srinivasa, Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search, The International Journal of Robotics Research. 2020;39(5):543-567, DOI: 10.1177/0278364919890396.

Path planning in robotics often requires finding high-quality solutions to continuously valued and/or high-dimensional problems. These problems are challenging and most planning algorithms instead solve simplified approximations. Popular approximations include graphs and random samples, as used by informed graph-based searches and anytime sampling-based planners, respectively.

Informed graph-based searches, such as A*, traditionally use heuristics to search a priori graphs in order of potential solution quality. This makes their search efficient, but leaves their performance dependent on the chosen approximation. If the resolution of the chosen approximation is too low, then they may not find a (suitable) solution, but if it is too high, then they may take a prohibitively long time to do so.

Anytime sampling-based planners, such as RRT*, traditionally use random sampling to approximate the problem domain incrementally. This allows them to increase resolution until a suitable solution is found, but makes their search dependent on the order of approximation. Arbitrary sequences of random samples approximate the problem domain in every direction simultaneously, but may be prohibitively inefficient at containing a solution.

This article unifies and extends these two approaches to develop Batch Informed Trees (BIT*), an informed, anytime sampling-based planner. BIT* solves continuous path planning problems efficiently by using sampling and heuristics to alternately approximate and search the problem domain. Its search is ordered by potential solution quality, as in A*, and its approximation improves indefinitely with additional computational time, as in RRT*. It is shown analytically to be almost-surely asymptotically optimal and experimentally to outperform existing sampling-based planners, especially on high-dimensional planning problems.

A new variant of A* that is more computationally efficient

Adam Niewola, Leszek Podsedkowski, L* Algorithm—A Linear Computational Complexity Graph Searching Algorithm for Path Planning, Journal of Intelligent & Robotic Systems, September 2018, Volume 91, Issue 3–4, pp 425–444, DOI: 10.1007/s10846-017-0748-6.

The state-of-the-art graph searching algorithm applied to the optimal global path planning problem for mobile robots is the A* algorithm with the heap structured open list. In this paper, we present a novel algorithm, called the L* algorithm, which can be applied to global path planning and is faster than the A* algorithm. The structure of the open list with the use of bidirectional sublists (buckets) ensures the linear computational complexity of the L* algorithm because the nodes in the current bucket can be processed in any sequence and it is not necessary to sort the bucket. Our approach can maintain the optimality and linear computational complexity with the use of the cost expressed by floating-point numbers. The paper presents the requirements of the L* algorithm use and the proof of the admissibility of this algorithm. The experiments confirmed that the L* algorithm is faster than the A* algorithm in various path planning scenarios. We also introduced a method of estimating the execution time of the A* and the L* algorithm. The method was compared with the experimental results.