Tag Archives: Deep Reinforcement Learning

Deep learning RL methods for robot navigation

Luong, M., Pham, C., Incremental Learning for Autonomous Navigation of Mobile Robots based on Deep Reinforcement Learning, . J Intell Robot Syst 101, 1 (2021) DOI: 10.1007/s10846-020-01262-5.

This paper presents an incremental learning method and system for autonomous robot navigation. The range finder laser sensor and online deep reinforcement learning are utilized for generating the navigation policy, which is effective for avoiding obstacles along the robot’s trajectories as well as for robot’s reaching the destination. An empirical experiment is conducted under simulation and real-world settings. Under the simulation environment, the results show that the proposed method can generate a highly effective navigation policy (more than 90% accuracy) after only 150k training iterations. Moreover, our system has slightly outperformed deep-Q, while having considerably surpassed Proximal Policy Optimization, two recent state-of-the art robot navigation systems. Finally, two experiments are performed to demonstrate the feasibility and effectiveness of our robot’s proposed navigation system in real-time under real-world settings.

Application of Deep RL to person following by a robot, reducing the training effort of the network by reusing simple state situations in many artificially generated states

Pang, L., Zhang, Y., Coleman, S. et al., Efficient Hybrid-Supervised Deep Reinforcement Learning for Person Following Robot, J Intell Robot Syst 97, 299–312 (2020), DOI: 10.1007/s10846-019-01030-0.

Traditional person following robots usually need hand-crafted features and a well-designed controller to follow the assigned person. Normally it is difficult to be applied in outdoor situations due to variability and complexity of the environment. In this paper, we propose an approach in which an agent is trained by hybrid-supervised deep reinforcement learning (DRL) to perform a person following task in end-to-end manner. The approach enables the robot to learn features autonomously from monocular images and to enhance performance via robot-environment interaction. Experiments show that the proposed approach is adaptive to complex situations with significant illumination variation, object occlusion, target disappearance, pose change, and pedestrian interference. In order to speed up the training process to ensure easy application of DRL to real-world robotic follower controls, we apply an integration method through which the agent receives prior knowledge from a supervised learning (SL) policy network and reinforces its performance with a value-based or policy-based (including actor-critic method) DRL model. We also utilize an efficient data collection approach for supervised learning in the context of person following. Experimental results not only verify the robustness of the proposed DRL-based person following robot system, but also indicate how easily the robot can learn from mistakes and improve performance.

A nice (short) survey of deep RL

Matthew Botvinick, Sam Ritter, Jane X. Wang, Zeb Kurth-Nelson, Charles Blundell, Demis Hassabis, Reinforcement Learning, Fast and Slow, Trends in Cognitive Sciences, Volume 23, Issue 5, 2019, Pages 408-422 DOI: 10.1016/j.tics.2019.02.006.

Deep reinforcement learning (RL) methods have driven impressive advances in artificial intelligence in recent years, exceeding human performance in domains ranging from Atari to Go to no-limit poker. This progress has drawn the attention of cognitive scientists interested in understanding human learning. However, the concern has been raised that deep RL may be too sample-inefficient – that is, it may simply be too slow – to provide a plausible model of how humans learn. In the present review, we counter this critique by describing recently developed techniques that allow deep RL to operate more nimbly, solving problems much more quickly than previous methods. Although these techniques were developed in an AI context, we propose that they may have rich implications for psychology and neuroscience. A key insight, arising from these AI methods, concerns the fundamental connection between fast RL and slower, more incremental forms of learning.

Interesting use of RL (deep-RL) for detection – reformulation of detection as a sequential decision process

F. Ghesu et al., Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 176-189, DOI: 10.1109/TPAMI.2017.2782687.

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.

Deep reinforcement learning applied to learn both attention and classification in a task of vehicle classification

D. Zhao, Y. Chen and L. Lv, Deep Reinforcement Learning With Visual Attention for Vehicle Classification, IEEE Transactions on Cognitive and Developmental Systems, vol. 9, no. 4, pp. 356-367, DOI: 10.1109/TCDS.2016.2614675.

Automatic vehicle classification is crucial to intelligent transportation system, especially for vehicle-tracking by police. Due to the complex lighting and image capture conditions, image-based vehicle classification in real-world environments is still a challenging task and the performance is far from being satisfactory. However, owing to the mechanism of visual attention, the human vision system shows remarkable capability compared with the computer vision system, especially in distinguishing nuances processing. Inspired by this mechanism, we propose a convolutional neural network (CNN) model of visual attention for image classification. A visual attention-based image processing module is used to highlight one part of an image and weaken the others, generating a focused image. Then the focused image is input into the CNN to be classified. According to the classification probability distribution, we compute the information entropy to guide a reinforcement learning agent to achieve a better policy for image classification to select the key parts of an image. Systematic experiments on a surveillance-nature dataset which contains images captured by surveillance cameras in the front view, demonstrate that the proposed model is more competitive than the large-scale CNN in vehicle classification tasks.