Tag Archives: Commonsense Reasoning

Integrating symbolic (common sense) reasoning and probabilistic planning (POMDPs) in robots

Shiqi Zhang, Piyush Khandelwal, Peter Stone, iCORPP: Interleaved commonsense reasoning and probabilistic planning on robots, Robotics and Autonomous Systems, Volume 174, 2024 DOI: 10.1016/j.robot.2023.104613.

Robot sequential decision-making in the real world is a challenge because it requires the robots to simultaneously reason about the current world state and dynamics, while planning actions to accomplish complex tasks. On the one hand, declarative languages and reasoning algorithms support representing and reasoning with commonsense knowledge. But these algorithms are not good at planning actions toward maximizing cumulative reward over a long, unspecified horizon. On the other hand, probabilistic planning frameworks, such as Markov decision processes (MDPs) and partially observable MDPs (POMDPs), support planning to achieve long-term goals under uncertainty. But they are ill-equipped to represent or reason about knowledge that is not directly related to actions. In this article, we present an algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers. In this process, robot decision-making problems are decomposed into two interdependent (smaller) subproblems that focus on reasoning to “understand the world” and planning to “achieve the goal” respectively. The developed algorithm has been implemented and evaluated both in simulation and on real robots using everyday service tasks, such as indoor navigation, and dialog management. Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines including handcrafted action policies.