Tag Archives: Back Propagation

Models of brain based on artificial neural networks

James C.R. Whittington, Rafal Bogacz, Theories of Error Back-Propagation in the Brain, Trends in Cognitive Sciences, Volume 23, Issue 3, 2019, Pages 235-250 DOI: 10.1016/j.tics.2018.12.005.

This review article summarises recently proposed theories on how neural circuits in the brain could approximate the error back-propagation algorithm used by artificial neural networks. Computational models implementing these theories achieve learning as efficient as artificial neural networks, but they use simple synaptic plasticity rules based on activity of presynaptic and postsynaptic neurons. The models have similarities, such as including both feedforward and feedback connections, allowing information about error to propagate throughout the network. Furthermore, they incorporate experimental evidence on neural connectivity, responses, and plasticity. These models provide insights on how brain networks might be organised such that modification of synaptic weights on multiple levels of cortical hierarchy leads to improved performance on tasks.