Rao-Blackwellized Particle Filter SLAM with grid maps in which particles do not contain the whole map but only a part

H. Jo, H. M. Cho, S. Jo and E. Kim, Efficient Grid-Based Rao–Blackwellized Particle Filter SLAM With Interparticle Map Sharing, IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 714-724, DOI: 10.1109/TMECH.2018.2795252.

In this paper, we propose a novel and efficient grid-based Rao-Blackwellized particle filter simultaneous localization and mapping (RBPF-SLAM) with interparticle map shaping (IPMS). The proposed method aims at saving the computational memory in the grid-based RBPF-SLAM while maintaining the mapping accuracy. Unlike conventional RBPF-SLAM in which each particle has its own map of the whole environment, each particle has only a small map of the nearby environment called an individual map in the proposed method. Instead, the map of the remaining large environment is shared by the particles. The part shared by the particles is called a base map. If the individual small maps become reliable enough to trust, they are merged with the base map. To determine when and which part of an individual map should be merged with the base map, we propose two map sharing criteria. Finally, the proposed IPMS RBPF-SLAM is applied to the real-world datasets and benchmark datasets. The experimental results show that our method outperforms conventional methods in terms of map accuracy versus memory consumption.

Comments are closed.

Post Navigation