A robotic wheelchair navigation algorithm that plans paths taking into account the discomfort of the user

Yoichi Morales, Atsushi Watanabe, Florent Ferreri, Jani Even, Kazuhiro Shinozawa, Norihiro Hagita, Passenger discomfort map for autonomous navigation in a robotic wheelchair, Robotics and Autonomous Systems, Volume 103, 2018, Pages 13-26, DOI: 10.1016/j.robot.2018.02.002.

This work presents a navigational approach that takes into consideration the perception of comfort by a human passenger. Comfort is the state of being at ease and free from stress; thus, comfortable navigation is a ride that, in addition to being safe, is perceived by the passenger as being free from anxiety and stress. This study considers how to compute passenger comfortable paths. To compute such paths, passenger discomfort is studied in locations with good visibility and those with no visibility. In locations with good visibility, passenger preference to ride in the road is studied. For locations with non-visible areas, the relationship between passenger visibility and discomfort is studied. Autonomous-navigation experiments are performed to build a map of human discomfort that is used to compute global paths. A path planner is proposed that minimizes a three-variable cost function: location discomfort cost, area visibility cost, and path length cost. Planner parameters are calibrated toward a composite trajectory histogram built with data taken from participant self-driving trajectories. Finally, autonomous navigation experiments with 30 participants show that the proposed approach is rated as more comfortable than the state-of-the-art shortest planner approach.

Comments are closed.

Post Navigation