Kyle J. Jaquess, Rodolphe J. Gentili, Li-Chuan Lo, Hyuk Oh, Jing Zhang, Jeremy C. Rietschel, Matthew W. Miller, Ying Ying Tan, Bradley D. Hatfield, Empirical evidence for the relationship between cognitive workload and attentional reserve, International Journal of Psychophysiology, Volume 121, 2017, Pages 46-55, DOI: 10.1016/j.ijpsycho.2017.09.007.
While the concepts of cognitive workload and attentional reserve have been thought to have an inverse relationship for some time, such a relationship has never been empirically tested. This was the purpose of the present study. Aspects of the electroencephalogram were used to assess both cognitive workload and attentional reserve. Specifically, spectral measures of cortical activation were used to assess cognitive workload, while amplitudes of the event-related potential from the presentation of unattended “novel” sounds were used to assess attentional reserve. The relationship between these two families of measures was assessed using canonical correlation. Twenty-seven participants performed a flight simulator task under three levels of challenge. Verification of manipulation was performed using self-report measures of task demand, objective task performance, and heart rate variability using electrocardiography. Results revealed a strong, negative relationship between the spectral measures of cortical activation, believed to be representative of cognitive workload, and ERP amplitudes, believed to be representative of attentional reserve. This finding provides support for the theoretical and intuitive notion that cognitive workload and attentional reserve are inversely related. The practical implications of this result include improved state classification using advanced machine learning techniques, enhanced personnel selection/recruitment/placement, and augmented learning/training.