A variant of RL aimed at reducing bias of conventional Q-learning

Fanghui Huang, Wenqi Han, Xiang Li, Xinyang Deng, Wen Jiang, Reducing the estimation bias and variance in reinforcement learning via Maxmean and Aitken value iteration, Engineering Applications of Artificial Intelligence, Volume 162, Part C, 2025, 10.1016/j.engappai.2025.112502.

The value-based reinforcement leaning methods suffer from overestimation bias, because of the existence of max operator, resulting in suboptimal policies. Meanwhile, variance in value estimation will cause the instability of networks. Many algorithms have been presented to solve the mentioned, but these lack the theoretical analysis about the degree of estimation bias, and the trade-off between the estimation bias and variance. Motivated by the above, in this paper, we propose a novel method based on Maxmean and Aitken value iteration, named MMAVI. The Maxmean operation allows the average of multiple state–action values (Q values) to be used as the estimated target value to mitigate the bias and variance. The Aitken value iteration is used to update Q values and improve the convergence rate. Based on the proposed method, combined with Q-learning and deep Q-network, we design two novel algorithms to adapt to different environments. To understand the effect of MMAVI, we analyze it both theoretically and empirically. In theory, we derive the closed-form expressions of reducing bias and variance, and prove that the convergence rate of our proposed method is faster than the traditional methods with Bellman equation. In addition, the convergence of our algorithms is proved in a tabular setting. Finally, we demonstrate that our proposed algorithms outperform the state-of-the-art algorithms in several environments.

Comments are closed.

Post Navigation