Ufuk Demircioğlu, Halit Bakır, Reinforcement learning–driven proportional–integral–derivative controller tuning for mass–spring systems: Stability, performance, and hyperparameter analysis, Engineering Applications of Artificial Intelligence, Volume 162, Part D, 2025, 10.1016/j.engappai.2025.112692.
Artificial intelligence (AI) methods—particularly reinforcement learning (RL)—are used to tune Proportional–Integral–Derivative (PID) controller parameters for a mass–spring–damper system. Learning is performed with the Twin Delayed Deep Deterministic Policy Gradient (TD3) actor–critic algorithm, implemented in MATLAB (Matrix Laboratory) and Simulink (a simulation environment by MathWorks). The objective is to examine the effect of critical RL hyperparameters—including experience buffer size, mini-batch size, and target policy smoothing noise—on the quality of learned PID gains and control performance. The proposed method eliminates the need for manual gain tuning by enabling the RL agent to autonomously learn optimal control strategies through continuous interaction with the Simulink-modeled mass–spring–damper system, where the agent observes responses and applies control actions to optimize the PID gains. Results show that small buffer sizes and suboptimal batch configurations cause unstable behavior, while buffer sizes of 105 or larger and mini-batch sizes between 64 and 128 yield robust tracking. A target policy smoothing noise of 0.01 produced the best performance, while values between 0.05 and 0.1 also provided stable results. Comparative analysis with the classical Simulink PID tuner indicated that, for this linear system, the conventional tuner achieved slightly better transient performance, particularly in overshoot and settling time. Although the RL-based method showed adaptability and generated valid PID gains, it did not surpass the classical approach in this structured system. These findings highlight the promise of AI- and RL-driven control in uncertain, nonlinear, or variable dynamics, while underscoring the importance of hyperparameter optimization in realizing the potential of RL-based Proportional–Integral–Derivative tuning.
