Inclusion of LLMs in multiple task learning for generating rewards

Z. Lin, Y. Chen and Z. Liu, AutoSkill: Hierarchical Open-Ended Skill Acquisition for Long-Horizon Manipulation Tasks via Language-Modulated Rewards, IEEE Transactions on Cognitive and Developmental Systems, vol. 17, no. 5, pp. 1141-1152, Oct. 2025, 10.1109/TCDS.2025.3551298.

A desirable property of generalist robots is the ability to both bootstrap diverse skills and solve new long-horizon tasks in open-ended environments without human intervention. Recent advancements have shown that large language models (LLMs) encapsulate vast-scale semantic knowledge about the world to enable long-horizon robot planning. However, they are typically restricted to reasoning high-level instructions and lack world grounding, which makes it difficult for them to coordinately bootstrap and acquire new skills in unstructured environments. To this end, we propose AutoSkill, a hierarchical system that empowers the physical robot to automatically learn to cope with new long-horizon tasks by growing an open-ended skill library without hand-crafted rewards. AutoSkill consists of two key components: 1) an in-context skill chain generation and new skill bootstrapping guided by LLMs that inform the robot of discrete and interpretable skill instructions for skill retrieval and augmentation within the skill library; and 2) a zero-shot language-modulated reward scheme in conjunction with a meta prompter facilitates online new skill acquisition via expert-free supervision aligned with proposed skill directives. Extensive experiments conducted in both simulated and realistic environments demonstrate AutoSkill’s superiority over other LLM-based planners as well as hierarchical methods in expediting online learning for novel manipulation tasks.

Comments are closed.

Post Navigation