P. Zhang, Z. Hua and J. Ding, A Central Motor System Inspired Pretraining Reinforcement Learning for Robotic Control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 55, no. 9, pp. 6285-6298, Sept. 2025, 10.1109/TSMC.2025.3577698.
Robots typically encounter diverse tasks, bringing a significant challenge for motion control. Pretraining reinforcement learning (PRL) enables robots to adapt quickly to various tasks by exploiting reusable skills. The existing PRL methods often rely on datasets and human expert knowledge, struggle to discover diverse and dynamic skills, and exhibit generalization and adaptability to different types of robots and downstream tasks. This article proposes a novel PRL algorithm based on the central motor system mechanisms, which can discover diverse and dynamic skills without relying on data and expert knowledge, effectively enabling robots to tackle different types of downstream tasks. Inspired by the cerebellum’s role in balance control and skill storage within the central motor system, an intrinsic fused reward is introduced to explore dynamic skills and eliminate dependence on data and expert knowledge during pretraining. Drawing from the basal ganglia’s function in motor programming, a discrete skill encoding method is designed to increase the diversity of discovered skills, improving the performance of complex robots in challenging environments. Furthermore, incorporating the basal ganglia’s role in motor regulation, a skill activity function is proposed to generate skills at varying dynamic levels, thereby improving the adaptability of robots in multiple downstream tasks. The effectiveness of the proposed algorithm has been demonstrated through simulation experiments on four different morphological robots across multiple downstream tasks.