Improving sample efficiency in actor-critic RL (A2C with NNs) through multimodal advantage function

Jonghyeok Park, Soohee Han, Reinforcement learning with multimodal advantage function for accurate advantage estimation in robot learning, Engineering Applications of Artificial Intelligence, Volume 126, Part C, 2023 DOI: 10.1016/j.engappai.2023.107019.

In this paper, we propose a reinforcement learning (RL) framework that uses a multimodal advantage function (MAF) to come close to the true advantage function, thereby achieving high returns. The MAF, which is constructed as a logarithm of a mixture of Gaussians policy (MoG-P) and trained by globally collected past experiences, directly assesses the complex true advantage function with its multi-modality and is expected to enhance the sample-efficiency of RL. To realize the expected enhanced learning performance with the proposed RL framework, two practical techniques are developed that include mode selection and rounding off of actions during the policy update process. Mode selection is conducted to sample the action around the most influential or weighted mode for efficient environment exploration. For fast policy updates, past actions are rounded off to discretized action values when calculating the multimodal advantage function. The proposed RL framework was validated using simulation environments and a real inverted pendulum system. The findings showed that the proposed framework can achieve a more sample-efficient performance or higher returns than other advantage-based RL benchmarks.

Comments are closed.

Post Navigation