Leveraging the unexplainability and opacity of NNs to generate random numbers

Y. Almardeny, A. Benavoli, N. Boujnah and E. Naredo, A Reinforcement Learning System for Generating Instantaneous Quality Random Sequences, IEEE Transactions on Artificial Intelligence, vol. 4, no. 3, pp. 402-415, June 2023 DOI: 10.1109/TAI.2022.3161893.

Random numbers are essential to most computer applications. Still, producing high-quality random sequences is a big challenge. Inspired by the success of artificial neural networks and reinforcement learning, we propose a novel and effective end-to-end learning system to generate pseudorandom sequences that operates under the upside-down reinforcement learning framework. It is based on manipulating the generalized information entropy metric to derive commands that instantaneously guide the agent toward the optimal random behavior. Using a wide range of evaluation tests, the proposed approach is compared against three state-of-the-art accredited pseudorandom number generators (PRNGs). The experimental results agree with our theoretical study and show that the proposed framework is a promising candidate for a wide range of applications.

Comments are closed.

Post Navigation