Analyzing effects of loads and terrain on wheel shapes in order to reduce errors in position estimation of a mobile wheeled robot

Smieszek, M., Dobrzanska, M. & Dobrzanski, P. , The impact of load on the wheel rolling radius and slip in a small mobile platform. Auton Robot (2019) 43: 2095, DOI: 10.1007/s10514-019-09857-0.

Automated guided vehicles are used in a variety of applications. Their major purpose is to replace humans in onerous, monotonous and sometimes dangerous operations. Such vehicles are controlled and navigated by application-specific software. In the case of vehicles used in multiple environments and operating conditions, such as the vehicles which are the subject of this study, a reasonable approach is required when selecting the navigation system. The vehicle may travel around an enclosed hall and around an open yard. The pavement surface may be smooth or uneven. Vehicle wheels should be flexible and facilitate the isolation and absorption of vibrations in order to reduce the effect of surface unevenness to the load. Another important factor affecting the operating conditions are changes to vehicle load resulting from the distribution of the load and the weight carried. Considering all of the factors previously mentioned, the vehicle’s navigation and control system is required to meet two opposing criteria. One of them is low price and simplicity, the other is ensuring the required accuracy when following the preset route. In the course of this study, a methodology was developed and tested which aims to obtain a satisfactory compromise between those two conflicting criteria. During the study a vehicle made in Technical University of Rzeszow was used. The results of the experimental research have been analysed. The results of the analysis provided a foundation for the development of a methodology leading to a reduction in navigation errors. Movement simulations for the proposed vehicle system demonstrated the potential for a significant reduction in the number of positioning errors.

Comments are closed.

Post Navigation