Monthly Archives: December 2017

You are browsing the site archives by month.

A survey in interactive perception in robots: interacting with the environment to improve perception and using internal models and prediction too

J. Bohg et al, Interactive Perception: Leveraging Action in Perception and Perception in Action, IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1273-1291, DOI: 10.1109/TRO.2017.2721939.

Recent approaches in robot perception follow the insight that perception is facilitated by interaction with the environment. These approaches are subsumed under the term Interactive Perception (IP). This view of perception provides the following benefits. First, interaction with the environment creates a rich sensory signal that would otherwise not be present. Second, knowledge of the regularity in the combined space of sensory data and action parameters facilitates the prediction and interpretation of the sensory signal. In this survey, we postulate this as a principle for robot perception and collect evidence in its support by analyzing and categorizing existing work in this area. We also provide an overview of the most important applications of IP. We close this survey by discussing remaining open questions. With this survey, we hope to help define the field of Interactive Perception and to provide a valuable resource for future research.

Experimental comparison of methods for merging line segments in line-segment-based maps for mobile robots

Francesco Amigoni, Alberto Quattrini Li, Comparing methods for merging redundant line segments in maps, Robotics and Autonomous Systems, Volume 99, 2018, Pages 135-147, DOI: 10.1016/j.robot.2017.10.016.

Map building of indoor environments is considered a basic building block for autonomous mobile robots, enabling, among others, self-localization and efficient path planning. While the mainstream approach stores maps as occupancy grids of regular cells, some works have advocated for the use of maps composed of line segments to represent the boundary of obstacles, leveraging on their more compact size. In order to limit both the growth of the corresponding data structures and the effort in processing these maps, a number of methods have been proposed for merging together redundant line segments that represent the same portion of the environment. In this paper, we experimentally compare some of the most significant methods for merging line segments in maps by applying them to publicly available data sets. At the end, we propose some guidelines to choose the appropriate method.