Monthly Archives: April 2016

You are browsing the site archives by month.

Incorporating spatial info into the symbolic (bag-of-words) info used for loop closure detection

Nishant Kejriwal, Swagat Kumar, Tomohiro Shibata, High performance loop closure detection using bag of word pairs, Robotics and Autonomous Systems, Volume 77, March 2016, Pages 55-65, ISSN 0921-8890, DOI: 10.1016/j.robot.2015.12.003.

In this paper, we look into the problem of loop closure detection in topological mapping. The bag of words (BoW) is a popular approach which is fast and easy to implement, but suffers from perceptual aliasing, primarily due to vector quantization. We propose to overcome this limitation by incorporating the spatial co-occurrence information directly into the dictionary itself. This is done by creating an additional dictionary comprising of word pairs, which are formed by using a spatial neighborhood defined based on the scale size of each point feature. Since the word pairs are defined relative to the spatial location of each point feature, they exhibit a directional attribute which is a new finding made in this paper. The proposed approach, called bag of word pairs (BoWP), uses relative spatial co-occurrence of words to overcome the limitations of the conventional BoW methods. Unlike previous methods that use spatial arrangement only as a verification step, the proposed method incorporates spatial information directly into the detection level and thus, influences all stages of decision making. The proposed BoWP method is implemented in an on-line fashion by incorporating some of the popular concepts such as, K-D tree for storing and searching features, Bayesian probabilistic framework for making decisions on loop closures, incremental creation of dictionary and using RANSAC for confirming loop closure for the top candidate. Unlike previous methods, an incremental version of K-D tree implementation is used which prevents rebuilding of tree for every incoming image, thereby reducing the per image computation time considerably. Through experiments on standard datasets it is shown that the proposed methods provide better recall performance than most of the existing methods. This improvement is achieved without making use any geometric information obtained from range sensors or robot odometry. The computational requirements for the algorithm is comparable to that of BoW methods and is shown to be less than the latest state-of-the-art method in this category.

Implementation of spatial relations in graph-SLAM through quaternions instead of homogeneous matrices

Jiantong Cheng, Jonghyuk Kim, Zhenyu Jiang, Wanfang Che, Dual quaternion-based graphical SLAM, Robotics and Autonomous Systems, Volume 77, March 2016, Pages 15-24, ISSN 0921-8890, DOI: 10.1016/j.robot.2015.12.001.

This paper presents a new parameterization approach for the graph-based SLAM problem and reveals the differences of two popular over-parameterized ways in the optimization procedure. In the SALM problem, constraints or relative transformations between any two poses are generally separated into translations plus 3D rotations, which are then described in a homogeneous transformation matrix (HTM) to simplify computational operations. This however introduces added complexities in frequent conversions between the HTM and state variables, due to their different representations. This new approach, unit dual quaternion (UDQ), describes a spatial transformation as a screw with only 8 elements. We show that state variables can be directly represented by UDQs, and how their relative transformations can be written with the UDQ product, without the trivial computations of HTM. Then, we explore the performances of the unit quaternion and the axis–angle representations in the graph-based SLAM problem, which have been successfully applied to over parameterize perturbations under the assumption of small errors. Based on public synthetic and real-world datasets in 2D and 3D environments, experimental results show that the proposed approach reduces greatly the computational complexity while obtaining the same optimization accuracies as the HTM-based algorithm, and the axis–angle representation is superior to be the quaternion in the case of poor initial estimations.

How to make that a symbol becomes related to things on which it is not grounded, and a nice introduction to the symbolist/subsymbolist dilemma

Veale, Tony and Al-Najjar, Khalid (2016). Grounded for life: creative symbol-grounding for lexical invention. Connection Science 28(2). DOI: 10.1080/09540091.2015.1130025

One of the challenges of linguistic creativity is to use words in a way that is novel and striking and even whimsical, to convey meanings that remain stubbornly grounded in the very same world of familiar experiences as serves to anchor the most literal and unimaginative language. The challenge remains unmet by systems that merely shuttle or arrange words to achieve novel arrangements without concern as to how those arrangements are to spur the processes of meaning construction in a listener. In this paper we explore a problem of lexical invention that cannot be solved without a model ? explicit or implicit ? of the perceptual grounding of language: the invention of apt new names for colours. To solve this problem here we shall call upon the notion of a linguistic readymade, a phrase that is wrenched from its original context of use to be given new meaning and new resonance in new settings. To ensure that our linguistic readymades ? which owe a great deal to Marcel Duchamp’s notion of found art ? are anchored in a consensus model of perception, we introduce the notion of a lexicalised colour stereotype.