Category Archives: Psycho-physiological Bases Of Engineering

Novelty detection as a way for enhancing learning capabilities of a robot, and a brief but interesting survey of motivational theories and their difference with attention

Y. Gatsoulis, T.M. McGinnity, Intrinsically motivated learning systems based on biologically-inspired novelty detection, Robotics and Autonomous Systems, Volume 68, June 2015, Pages 12-20, ISSN 0921-8890, DOI: 10.1016/j.robot.2015.02.006.

Intrinsic motivations play an important role in human learning, particularly in the early stages of childhood development, and ideas from this research field have influenced robotic learning and adaptability. In this paper we investigate one specific type of intrinsic motivation, that of novelty detection and we discuss the reasons that make it a powerful facility for continuous learning. We formulate and present one original type of biologically inspired novelty detection architecture and implement it on a robotic system engaged in a perceptual classification task. The results of real-world robot experiments we conducted show how this original architecture conforms to behavioural observations and demonstrate its effectiveness in terms of focusing the system’s attention in areas that are potential for effective learning.

Reinforcement learning used for an adaptive attention mechanism, and integrated in an architecture with both top-down and bottom-up vision processing

Ognibene, D.; Baldassare, G., Ecological Active Vision: Four Bioinspired Principles to Integrate Bottom–Up and Adaptive Top–Down Attention Tested With a Simple Camera-Arm Robot, Autonomous Mental Development, IEEE Transactions on , vol.7, no.1, pp.3,25, March 2015. DOI: 10.1109/TAMD.2014.2341351.

Vision gives primates a wealth of information useful to manipulate the environment, but at the same time it can easily overwhelm their computational resources. Active vision is a key solution found by nature to solve this problem: a limited fovea actively displaced in space to collect only relevant information. Here we highlight that in ecological conditions this solution encounters four problems: 1) the agent needs to learn where to look based on its goals; 2) manipulation causes learning feedback in areas of space possibly outside the attention focus; 3) good visual actions are needed to guide manipulation actions, but only these can generate learning feedback; and 4) a limited fovea causes aliasing problems. We then propose a computational architecture (“BITPIC”) to overcome the four problems, integrating four bioinspired key ingredients: 1) reinforcement-learning fovea-based top-down attention; 2) a strong vision-manipulation coupling; 3) bottom-up periphery-based attention; and 4) a novel action-oriented memory. The system is tested with a simple simulated camera-arm robot solving a class of search-and-reach tasks involving color-blob “objects.” The results show that the architecture solves the problems, and hence the tasks, very efficiently, and highlight how the architecture principles can contribute to a full exploitation of the advantages of active vision in ecological conditions.

On the process of the brain for detecting similarities, with a proposal for its structure and its timing

Qingfei Chen, Xiuling Liang, Peng Li, Chun Ye, Fuhong Li, Yi Lei, Hong Li, 2015, The processing of perceptual similarity with different features or spatial relations as revealed by P2/P300 amplitude, International Journal of Psychophysiology, Volume 95, Issue 3, March 2015, Pages 379-387, ISSN 0167-8760, DOI: 10.1016/j.ijpsycho.2015.01.009.

Visual features such as “color” and spatial relations such as “above” or “beside” have complex effects on similarity and difference judgments. We examined the relative impact of features and spatial relations on similarity and difference judgments via ERPs in an S1–S2 paradigm. Subjects were required to compare a remembered geometric shape (S1) with a second one (S2), and made a “high” or “low” judgment of either similarity or difference in separate blocks of trials. We found three main differences that suggest that the processing of features and spatial relations engages distinct neural processes. The first difference is a P2 effect in fronto-central regions which is sensitive to the presence of a feature difference. The second difference is a P300 in centro-parietal regions that is larger for difference judgments than for similarity judgments. Finally, the P300 effect elicited by feature differences was larger relative to spatial relation differences. These results supported the view that similarity judgments involve structural alignment rather than simple feature and relation matches, and furthermore, indicate the similarity judgment could be divided into three phases: feature or relation comparison (P2), structural alignment (P3 at 300–400 ms), and categorization (P3 at 450–550 ms).

On the not-so-domain-generic nature of statistical learning in the human brain

Ram Frost, Blair C. Armstrong, Noam Siegelman, Morten H. Christiansen, 2015, Domain generality versus modality specificity: the paradox of statistical learning, Trends in Cognitive Sciences, Volume 19, Issue 3, March 2015, Pages 117-125, DOI: 10.1016/j.tics.2014.12.010.

Statistical learning (SL) is typically considered to be a domain-general mechanism by which cognitive systems discover the underlying distributional properties of the input. However, recent studies examining whether there are commonalities in the learning of distributional information across different domains or modalities consistently reveal modality and stimulus specificity. Therefore, important questions are how and why a hypothesized domain-general learning mechanism systematically produces such effects. Here, we offer a theoretical framework according to which SL is not a unitary mechanism, but a set of domain-general computational principles that operate in different modalities and, therefore, are subject to the specific constraints characteristic of their respective brain regions. This framework offers testable predictions and we discuss its computational and neurobiological plausibility.

On search as a consequence of the exploration-exploitation trade-off, and as a core element in human cognition

Thomas T. Hills, Peter M. Todd, David Lazer, A. David Redish, Iain D. Couzin, the Cognitive Search Research Group, Exploration versus exploitation in space, mind, and society, Trends in Cognitive Sciences, Volume 19, Issue 1, January 2015, Pages 46-54, ISSN 1364-6613, DOI: 10.1016/j.tics.2014.10.004.

Search is a ubiquitous property of life. Although diverse domains have worked on search problems largely in isolation, recent trends across disciplines indicate that the formal properties of these problems share similar structures and, often, similar solutions. Moreover, internal search (e.g., memory search) shows similar characteristics to external search (e.g., spatial foraging), including shared neural mechanisms consistent with a common evolutionary origin across species. Search problems and their solutions also scale from individuals to societies, underlying and constraining problem solving, memory, information search, and scientific and cultural innovation. In summary, search represents a core feature of cognition, with a vast influence on its evolution and processes across contexts and requiring input from multiple domains to understand its implications and scope.

On the way humans reduce perceptual information during decision making, falling apart from statistically optimal behavior, in order to deal with the overwhelming sensory flow

Christopher Summerfield, Konstantinos Tsetsos, Do humans make good decisions?, Trends in Cognitive Sciences, Volume 19, Issue 1, January 2015, Pages 27-34, ISSN 1364-6613, DOI: 10.1016/j.tics.2014.11.005

Human performance on perceptual classification tasks approaches that of an ideal observer, but economic decisions are often inconsistent and intransitive, with preferences reversing according to the local context. We discuss the view that suboptimal choices may result from the efficient coding of decision-relevant information, a strategy that allows expected inputs to be processed with higher gain than unexpected inputs. Efficient coding leads to \u2018robust\u2019 decisions that depart from optimality but maximise the information transmitted by a limited-capacity system in a rapidly-changing world. We review recent work showing that when perceptual environments are variable or volatile, perceptual decisions exhibit the same suboptimal context-dependence as economic choices, and we propose a general computational framework that accounts for findings across the two domains.