Category Archives: Mobile Robot Localization

Robot kidnapping detection based on support vector machines

Dylan Campbell, Mark Whitty, Metric-based detection of robot kidnapping with an SVM classifier, Robotics and Autonomous Systems, Volume 69, July 2015, Pages 40-51, ISSN 0921-8890, DOI: 10.1016/j.robot.2014.08.004.

Kidnapping occurs when a robot is unaware that it has not correctly ascertained its position, potentially causing severe map deformation and reducing the robot’s functionality. This paper presents metric-based techniques for real-time kidnap detection, utilising either linear or SVM classifiers to identify all kidnapping events during the autonomous operation of a mobile robot. In contrast, existing techniques either solve specific cases of kidnapping, such as elevator motion, without addressing the general case or remove dependence on local pose estimation entirely, an inefficient and computationally expensive approach. Three metrics that measured the quality of a pose estimate were evaluated and a joint classifier was constructed by combining the most discriminative quality metric with a fourth metric that measured the discrepancy between two independent pose estimates. A multi-class Support Vector Machine classifier was also trained using all four metrics and produced better classification results than the simpler joint classifier, at the cost of requiring a larger training dataset. While metrics specific to 3D point clouds were used, the approach can be generalised to other forms of data, including visual, provided that two independent ways of estimating pose are available.

Novel recursive bayesian estimator based on approaching pdfs by polynomials and keeping a hypothesis for each of its modes

Huang, G.; Zhou, K.; Trawny, N.; Roumeliotis, S.I., (2015), A Bank of Maximum A Posteriori (MAP) Estimators for Target Tracking, Robotics, IEEE Transactions on , vol.31, no.1, pp.85,103. DOI: TRO.2014.2378432


Nonlinear estimation problems, such as range-only and bearing-only target tracking, are often addressed using linearized estimators, e.g., the extended Kalman filter (EKF). These estimators generally suffer from linearization errors as well as the inability to track multimodal probability density functions. In this paper, we propose a bank of batch maximum a posteriori (MAP) estimators as a general estimation framework that provides relinearization of the entire state trajectory, multihypothesis tracking, and an efficient hypothesis generation scheme. Each estimator in the bank is initialized using a locally optimal state estimate for the current time step. Every time a new measurement becomes available, we relax the original batch-MAP problem and solve it incrementally. More specifically, we convert the relaxed one-step-ahead cost function into polynomial or rational form and compute all the local minima analytically. These local minima generate highly probable hypotheses for the target’s trajectory and hence greatly improve the quality of the overall MAP estimate. Additionally, pruning of least probable hypotheses and marginalization of old states are employed to control the computational cost. Monte Carlo simulation and real-world experimental results show that the proposed approach significantly outperforms the standard EKF, the batch-MAP estimator, and the particle filter.

Probabilistic models of several sensors plus a method for distinguishing the different hypotheses from the posterior of a PF

V. Alvarez-Santos, A. Canedo-Rodriguez, R. Iglesias, X.M. Pardo, C.V. Regueiro, M. Fernandez-Delgado, Route learning and reproduction in a tour-guide robot, Robotics and Autonomous Systems, Volume 63, Part 2, January 2015, Pages 206-213, ISSN 0921-8890. DOI: 10.1016/j.robot.2014.07.013

Traditionally, route information is introduced in tour-guide robots by experts in robotics. In the tour-guide robot that we are developing, we allow the robot to learn new routes while following an instructor. In this paper we describe the route recording process that takes place while following a human, as well as, how those routes are later reproduced.

A key element of both route recording and reproduction is a robust multi-sensorial localization algorithm that we have designed, which is able to combine various sources of information to obtain an estimate of the robot’s pose. In this work we detail how the algorithm works, and how we use it to record routes. Moreover, we describe how our robot reproduces routes, including path planning within route points, and dynamic obstacle avoidance for safe navigation. Finally, we show through several trajectories how the robot was able to learn and reproduce different routes.