Category Archives: Robotics

Analyzing effects of loads and terrain on wheel shapes in order to reduce errors in position estimation of a mobile wheeled robot

Smieszek, M., Dobrzanska, M. & Dobrzanski, P. , The impact of load on the wheel rolling radius and slip in a small mobile platform. Auton Robot (2019) 43: 2095, DOI: 10.1007/s10514-019-09857-0.

Automated guided vehicles are used in a variety of applications. Their major purpose is to replace humans in onerous, monotonous and sometimes dangerous operations. Such vehicles are controlled and navigated by application-specific software. In the case of vehicles used in multiple environments and operating conditions, such as the vehicles which are the subject of this study, a reasonable approach is required when selecting the navigation system. The vehicle may travel around an enclosed hall and around an open yard. The pavement surface may be smooth or uneven. Vehicle wheels should be flexible and facilitate the isolation and absorption of vibrations in order to reduce the effect of surface unevenness to the load. Another important factor affecting the operating conditions are changes to vehicle load resulting from the distribution of the load and the weight carried. Considering all of the factors previously mentioned, the vehicle’s navigation and control system is required to meet two opposing criteria. One of them is low price and simplicity, the other is ensuring the required accuracy when following the preset route. In the course of this study, a methodology was developed and tested which aims to obtain a satisfactory compromise between those two conflicting criteria. During the study a vehicle made in Technical University of Rzeszow was used. The results of the experimental research have been analysed. The results of the analysis provided a foundation for the development of a methodology leading to a reduction in navigation errors. Movement simulations for the proposed vehicle system demonstrated the potential for a significant reduction in the number of positioning errors.

A kind of reinforcement learning that decouples modelling from planning using Gaussian Processes for the former

Rakicevic, N. & Kormushev, P., Active learning via informed search in movement parameter space for efficient robot task learning and transfer. Auton Robot (2019) 43: 1917, DOI: 10.1007/s10514-019-09842-7.

Learning complex physical tasks via trial-and-error is still challenging for high-degree-of-freedom robots. Greatest challenges are devising a suitable objective function that defines the task, and the high sample complexity of learning the task. We propose a novel active learning framework, consisting of decoupled task model and exploration components, which does not require an objective function. The task model is specific to a task and maps the parameter space, defining a trial, to the trial outcome space. The exploration component enables efficient search in the trial-parameter space to generate the subsequent most informative trials, by simultaneously exploiting all the information gained from previous trials and reducing the task model’s overall uncertainty. We analyse the performance of our framework in a simulation environment and further validate it on a challenging bimanual-robot puck-passing task. Results show that the robot successfully acquires the necessary skills after only 100 trials without any prior information about the task or target positions. Decoupling the framework’s components also enables efficient skill transfer to new environments which is validated experimentally.

On the formalization and conceptualization of real-time basic concepts and methods (RMS, EDF) for robots

Nicolas Gobillot, Charles Lesire, David Doose, A Design and Analysis Methodology for Component-Based Real-Time Architectures of Autonomous Systems. Journal of Intelligent & Robotic Systems, October 2019, Volume 96, Issue 1, pp 123–138, DOI: 10.1007/s10846-018-0967-5.

The integration of autonomous robots in real applications is a challenge. It needs that the behaviour of these robots is proved to be safe. In this paper, we focus on the real-time software embedded on the robot, and that supports the execution of safe and autonomous behaviours. We propose a methodology that goes from the design of component-based software architectures using a Domain Specific Language, to the analysis of the real-time constraints that arise when considering the safety of software applications. This methodology is supported by a code generation toolchain that ensures that the code eventually executed on the robot is consistent with the analysis performed. This methodology is applied on a ground robot exploring an area.

Hardware efficient collision avoidance for mobile robots through the use of interval arithmetics and parallelism

Pranjal Vyas, Leena Vachhani, K Sridharan, Hardware-efficient interval analysis based collision detection and avoidance for mobile robots. Mechatronics, Volume 62, 2019, DOI: 10.1016/j.mechatronics.2019.102258.

Collision detection and avoidance is challenging when the mobile robot is moving among multiple dynamic obstacles. A hardware-efficient architecture supporting parallel implementation is presented in this work for low-power, faster and reliable collision-free motion planning. An approach based on interval analysis is developed for designing an efficient hardware architecture. The proposed architecture achieves parallelism which can be combined with any robotic task involving multiple obstacles. Interval arithmetic is used for representing the pose of the robot and the obstacle as velocity intervals in a fixed time period. These intervals correspond to sub-intervals such as arcs and line-segments. In particular, the collision detection problem for dynamic objects involves the computation of line segment-arc intersections and segment-segment intersections. The intersection of these boundary curves is carried out in a hardware-efficient manner so that it avoids complex arithmetic computations such as multiplication, division etc and exploits parallelism. We develop several results on intersection of these sub-intervals for collision detection and use them to obtain a hardware-efficient collision detection algorithm that requires only shift and add-type of computations. The algorithm is further used in developing a hardware-efficient technique for finding an exhaustive set of solutions for avoiding collision of the robot with dynamic obstacles. Simulation results in MatLab and experiments with a Field Programmable Gate Array (FPGA)-based robot show that a variety of collision avoidance techniques can be implemented using the proposed solution set that guarantees collision avoidance with multiple obstacles.

Interesting summary of SLAM and its computational cost approaches

Joan Vallvé, Joan Solà, Juan Andrade-Cetto, Pose-graph SLAM sparsification using factor descent. Robotics and Autonomous Systems, Volume 119, 2019, Pages 108-118, DOI: 10.1016/j.robot.2019.06.004.

Since state of the art simultaneous localization and mapping (SLAM) algorithms are not constant time, it is often necessary to reduce the problem size while keeping as much of the original graph\u2019s information content. In graph SLAM, the problem is reduced by removing nodes and rearranging factors. This is normally faced locally: after selecting a node to be removed, its Markov blanket sub-graph is isolated, the node is marginalized and its dense result is sparsified. The aim of sparsification is to compute an approximation of the dense and non-relinearizable result of node marginalization with a new set of factors. Sparsification consists on two processes: building the topology of new factors, and finding the optimal parameters that best approximate the original dense distribution. This best approximation can be obtained through minimization of the Kullback\u2013Liebler divergence between the two distributions. Using simple topologies such as Chow\u2013Liu trees, there is a closed form for the optimal solution. However, a tree is oftentimes too sparse and produces bad distribution approximations. On the contrary, more populated topologies require nonlinear iterative optimization. In the present paper, the particularities of pose-graph SLAM are exploited for designing new informative topologies and for applying the novel factor descent iterative optimization method for sparsification. Several experiments are provided comparing the proposed topology methods and factor descent optimization with state-of-the-art methods in synthetic and real datasets with regards to approximation accuracy and computational cost.

Interesting account of robots that have non-rich sensors but have to do mapping and other modern stuff

Ma, F., Carlone, L., Ayaz, U., & Karaman, S. Sparse depth sensing for resource-constrained robots. The International Journal of Robotics Research, 38(8), 935 DOI: 10.1177/0278364919850296.

We consider the case in which a robot has to navigate in an unknown environment, but does not have enough on-board power or payload to carry a traditional depth sensor (e.g., a 3D lidar) and thus can only acquire a few (point-wise) depth measurements. We address the following question: is it possible to reconstruct the geometry of an unknown environment using sparse and incomplete depth measurements? Reconstruction from incomplete data is not possible in general, but when the robot operates in man-made environments, the depth exhibits some regularity (e.g., many planar surfaces with only a few edges); we leverage this regularity to infer depth from a small number of measurements. Our first contribution is a formulation of the depth reconstruction problem that bridges robot perception with the compressive sensing literature in signal processing. The second contribution includes a set of formal results that ascertain the exactness and stability of the depth reconstruction in 2D and 3D problems, and completely characterize the geometry of the profiles that we can reconstruct. Our third contribution is a set of practical algorithms for depth reconstruction: our formulation directly translates into algorithms for depth estimation based on convex programming. In real-world problems, these convex programs are very large and general-purpose solvers are relatively slow. For this reason, we discuss ad-hoc solvers that enable fast depth reconstruction in real problems. The last contribution is an extensive experimental evaluation in 2D and 3D problems, including Monte Carlo runs on simulated instances and testing on multiple real datasets. Empirical results confirm that the proposed approach ensures accurate depth reconstruction, outperforms interpolation-based strategies, and performs well even when the assumption of a structured environment is violated.

Use of Markov Decision Processes to select tasks in a service mobile robots

Lacerda, B., Faruq, F., Parker, D., & Hawes, N., Probabilistic planning with formal performance guarantees for mobile service robots, The International Journal of Robotics Research, DOI: 10.1177/0278364919856695.

We present a framework for mobile service robot task planning and execution, based on the use of probabilistic verification techniques for the generation of optimal policies with attached formal performance guarantees. Our approach is based on a Markov decision process model of the robot in its environment, encompassing a topological map where nodes represent relevant locations in the environment, and a range of tasks that can be executed in different locations. The navigation in the topological map is modeled stochastically for a specific time of day. This is done by using spatio-temporal models that provide, for a given time of day, the probability of successfully navigating between two topological nodes, and the expected time to do so. We then present a methodology to generate cost optimal policies for tasks specified in co-safe linear temporal logic. Our key contribution is to address scenarios in which the task may not be achievable with probability one. We introduce a task progression function and present an approach to generate policies that are formally guaranteed to, in decreasing order of priority: maximize the probability of finishing the task; maximize progress towards completion, if this is not possible; and minimize the expected time or cost required. We illustrate and evaluate our approach with a scalability evaluation in a simulated scenario, and report on its implementation in a robot performing service tasks in an office environment for long periods of time.

A related work with a nice taxonomy of robot navigation algorithms

Eduardo J. Molinos, Ángel Llamazares, Manuel Ocaña Dynamic window based approaches for avoiding obstacles in moving, Robotics and Autonomous Systems,
Volume 118, 2019, Pages 112-130 DOI: 10.1016/j.robot.2019.05.003.

In recent years, Unmanned Ground Vehicles (UGVs) have been widely used as service robots. Unlike industrial robots, which are situated in fixed and controlled positions, UGVs work in dynamic environments, sharing the environment with other vehicles and humans. These robots should be able to move without colliding with any obstacle, assuring its integrity and the environment safety. In this paper, we propose two adaptations of the classical Dynamic Window algorithm for dealing with dynamic obstacles like Dynamic Window for Dynamic Obstacles (DW4DO) and Dynamic Window for Dynamic Obstacles Tree (DW4DOT). These new algorithms are compared with our previous algorithms based on Curvature Velocity Methods: Predicted Curvature Velocity Method (PCVM) and Dynamic Curvature Velocity Method (DCVM). Proposals have been validated in both simulated and real environment using several robotic platforms.

A novel path planning method for both global and local planning with provable behavior, and a nice survey of existing navigation methods

Sgorbissa, A., Integrated robot planning, path following, and obstacle avoidance in two and three dimensions: wheeled robots, underwater vehicles, and multicopters, The International Journal of Robotics Research, DOI: 10.1177/0278364919846910.

We propose an innovative, integrated solution to path planning, path following, and obstacle avoidance that is suitable both for 2D and 3D navigation. The proposed method takes as input a generic curve connecting a start and a goal position, and is able to find a corresponding path from start to goal in a maze-like environment even in the absence of global information, it guarantees convergence to the path with kinematic control, and finally avoids locally sensed obstacles without becoming trapped in deadlocks. This is achieved by computing a closed-form expression in which the control variables are a continuous function of the input curve, the robot’s state, and the distance of all the locally sensed obstacles. Specifically, we introduce a novel formalism for describing the path in two and three dimensions, as well as a computationally efficient method for path deformation (based only on local sensor readings) that is able to find a path to the goal even when such path cannot be produced through continuous deformations of the original. The article provides formal proofs of all the properties above, as well as simulated results in a simulated environment with a wheeled robot, an underwater vehicle, and a multicopter.

Grid maps with confidence levels

Agha-mohammadi, A., Heiden, E., Hausman, K., & Sukhatme, G., Confidence-rich grid mapping, The International Journal of Robotics Research, DOI: 10.1177/0278364919839762.

Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.