Category Archives: Robotics

Leveraging embodiment: finding an optimal viewpoint in the robot environment for improving scene description

Tan, Sinan, Guo, Di, Liu, Huaping, Zhang, Xinyu, Sun, Fuchun Embodied scene description, Autonomous Robots 46(1) DOI: 10.1007/s10514-021-10014-9.

Embodiment is an important characteristic for all intelligent agents, while existing scene description tasks mainly focus on analyzing images passively and the semantic understanding of the scenario is separated from the interaction between the agent and the environment. In this work, we propose the Embodied Scene Description, which exploits the embodiment ability of the agent to find an optimal viewpoint in its environment for scene description tasks. A learning framework with the paradigms of imitation learning and reinforcement learning is established to teach the intelligent agent to generate corresponding sensorimotor activities. The proposed framework is tested on both the AI2Thor dataset and a real-world robotic platform for different scene description tasks, demonstrating the effectiveness and scalability of the developed method. Also, a mobile application is developed, which can be used to assist visually-impaired people to better understand their surroundings.

Using physical human-robot interaction to deduce the goals of the human during learning

Losey DP, Bajcsy A, O’Malley MK, Dragan AD, Physical interaction as communication: Learning robot objectives online from human corrections, The International Journal of Robotics Research. 2022;41(1):20-44 DOI: 10.1177/02783649211050958.

When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or guide the robot. The state of the art treats these interactions as disturbances that the robot should reject or avoid. At best, these robots respond safely while the human interacts; but after the human lets go, these robots simply return to their original behavior. We recognize that physical human\u2013robot interaction (pHRI) is often intentional: the human intervenes on purpose because the robot is not doing the task correctly. In this article, we argue that when pHRI is intentional it is also informative: the robot can leverage interactions to learn how it should complete the rest of its current task even after the person lets go. We formalize pHRI as a dynamical system, where the human has in mind an objective function they want the robot to optimize, but the robot does not get direct access to the parameters of this objective: they are internal to the human. Within our proposed framework human interactions become observations about the true objective. We introduce approximations to learn from and respond to pHRI in real-time. We recognize that not all human corrections are perfect: often users interact with the robot noisily, and so we improve the efficiency of robot learning from pHRI by reducing unintended learning. Finally, we conduct simulations and user studies on a robotic manipulator to compare our proposed approach with the state of the art. Our results indicate that learning from pHRI leads to better task performance and improved human satisfaction.

A grammar for symbolic robot maps that allows for mapping unknown spaces

B. Talbot, F. Dayoub, P. Corke and G. Wyeth, Robot Navigation in Unseen Spaces Using an Abstract Map, IEEE Transactions on Cognitive and Developmental Systems, vol. 13, no. 4, pp. 791-805, Dec. 2021 DOI: 10.1109/TCDS.2020.2993855.

Human navigation in built environments depends on symbolic spatial information which has unrealized potential to enhance robot navigation capabilities. Information sources, such as labels, signs, maps, planners, spoken directions, and navigational gestures communicate a wealth of spatial information to the navigators of built environments; a wealth of information that robots typically ignore. We present a robot navigation system that uses the same symbolic spatial information employed by humans to purposefully navigate in unseen built environments with a level of performance comparable to humans. The navigation system uses a novel data structure called the abstract map to imagine malleable spatial models for unseen spaces from spatial symbols. Sensorimotor perceptions from a robot are then employed to provide purposeful navigation to symbolic goal locations in the unseen environment. We show how a dynamic system can be used to create malleable spatial models for the abstract map, and provide an open-source implementation to encourage future work in the area of symbolic navigation. The symbolic navigation performance of humans and a robot is evaluated in a real-world built environment. This article concludes with a qualitative analysis of human navigation strategies, providing further insights into how the symbolic navigation capabilities of robots in unseen built environments can be improved in the future.

A survey of morphological development in developmental robotics

M. Naya-Varela, A. Faíña and R. J. Duro, Morphological Development in Robotic Learning: A Survey, IEEE Transactions on Cognitive and Developmental Systems, vol. 13, no. 4, pp. 750-768 DOI: 10.1109/TCDS.2021.3052548.

Humans and animals undergo morphological development (MD) processes from infancy to adulthood that have been shown to facilitate learning. However, most of the work on developmental robotics (DRs) considers fixed morphologies, addressing only the development of the cognitive system of the robots. This article aims to provide a survey of the work that is being carried out within the relatively new field of MD in robots. In particular, it contemplates MD as the changes that occur in the properties of the joints, links and sensors of a robot during its lifetime and focuses on the work carried out by different authors to try to determine their influence on robot learning. To this end, walking, reaching, grasping and vocalization have been identified as the four most representative tasks addressed in the field, clustering the work of the different authors around them. The approach followed is multidisciplinary, discussing the relationships among DRs, embodied artificial intelligence and developmental psychology in humans in general, as well as for each of the tasks, and providing an overview of the many avenues of research that are still open in this field.

Modelling network delay in the remote estimation of the robot state for networked telerobots

Barnali Das, Gordon Dobie, Delay compensated state estimation for Telepresence robot navigation, Robotics and Autonomous Systems, Volume 146, 2021 DOI: 10.1016/j.robot.2021.103890.

Telepresence robots empower human operators to navigate remote environments. However, operating and navigating the robot in an unknown environment is challenging due to delay in the communication network (e.g.,�distance, bandwidth, communication drop-outs etc.), processing delays and slow dynamics of the mobile robots resulting in time-lagged in the system. Also, erroneous sensor data measurement which is important to estimate the robot\u2019s true state (positional information) in the remote environment, often create complications and make it harder for the system to control the robot. In this paper, we propose a new approach for state estimation assuming uncertain delayed sensor measurements of a Telepresence robot during navigation. A new real world experimental model, based on Augmented State Extended Kalman Filter (AS-EKF), is proposed to estimate the true position of the Telepresence robot. The uncertainty of the delayed sensor measurements have been modelled using probabilistic density functions (PDF). The proposed model was successfully verified in our proposed experimental framework which consists of a state-of-the-art differential-drive Telepresence robot and a motion tracking multi-camera system. The results show significant improvements compared to the traditional EKF that does not consider uncertain delays in sensor measurements. The proposed model will be beneficial to build a real time predictive display by reducing the effect of visual delay to navigate the robot under the operator\u2019s control command, without waiting for delayed sensor measurements.

Analysis of the under-optimality of path lengths when path planning is carried out on a grid instead of the continuous world

James P. Bailey, Alex Nash, Craig A. Tovey, Sven Koenig, Path-length analysis for grid-based path planning, Artificial Intelligence, Volume 301, 2021, DOI: 10.1016/j.artint.2021.103560.

In video games and robotics, one often discretizes a continuous 2D environment into a regular grid with blocked and unblocked cells and then finds shortest paths for the agents on the resulting grid graph. Shortest grid paths, of course, are not necessarily true shortest paths in the continuous 2D environment. In this article, we therefore study how much longer a shortest grid path can be than a corresponding true shortest path on all regular grids with blocked and unblocked cells that tessellate continuous 2D environments. We study 5 different vertex connectivities that result from both different tessellations and different definitions of the neighbors of a vertex. Our path-length analysis yields either tight or asymptotically tight worst-case bounds in a unified framework. Our results show that the percentage by which a shortest grid path can be longer than a corresponding true shortest path decreases as the vertex connectivity increases. Our path-length analysis is topical because it determines the largest path-length reduction possible for any-angle path-planning algorithms (and thus their benefit), a class of path-planning algorithms in artificial intelligence and robotics that has become popular.

More efficient pose-graph optimization by using the cycles (loop closures) in the graph as a basis, and a nice summary of conventional pose-graph optimization

F. Bai, T. Vidal-Calleja and G. Grisetti, Sparse Pose Graph Optimization in Cycle Space, .IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1381-1400, Oct 2021 DOI: 10.1109/TRO.2021.3050328.

The state-of-the-art modern pose-graph optimization (PGO) systems are vertex based. In this context, the number of variables might be high, albeit the number of cycles in the graph (loop closures) is relatively low. For sparse problems particularly, the cycle space has a significantly smaller dimension than the number of vertices. By exploiting this observation, in this article, we propose an alternative solution to PGO that directly exploits the cycle space. We characterize the topology of the graph as a cycle matrix, and reparameterize the problem using relative poses, which are further constrained by a cycle basis of the graph. We show that by using a minimum cycle basis, the cycle-based approach has superior convergence properties against its vertex-based counterpart, in terms of convergence speed and convergence to the global minimum. For sparse graphs, our cycle-based approach is also more time efficient than the vertex-based. As an additional contribution of this work, we present an effective algorithm to compute the minimum cycle basis. Albeit known in computer science, we believe that this algorithm is not familiar to the robotics community. All the claims are validated by experiments on both standard benchmarks and simulated datasets. To foster the reproduction of the results, we provide a complete open-source C++ implementation 1 of our approach.

Learning rewards from diverse human sources

Bıyık E, Losey DP, Palan M, Landolfi NC, Shevchuk G, Sadigh D., Learning reward functions from diverse sources of human feedback: Optimally integrating demonstrations and preferences, . The International Journal of Robotics Research. 2022;41(1):45-67 DOI: 10.1177/02783649211041652.

Reward functions are a common way to specify the objective of a robot. As designing reward functions can be extremely challenging, a more promising approach is to directly learn reward functions from human teachers. Importantly, data from human teachers can be collected either passively or actively in a variety of forms: passive data sources include demonstrations (e.g., kinesthetic guidance), whereas preferences (e.g., comparative rankings) are actively elicited. Prior research has independently applied reward learning to these different data sources. However, there exist many domains where multiple sources are complementary and expressive. Motivated by this general problem, we present a framework to integrate multiple sources of information, which are either passively or actively collected from human users. In particular, we present an algorithm that first utilizes user demonstrations to initialize a belief about the reward function, and then actively probes the user with preference queries to zero-in on their true reward. This algorithm not only enables us combine multiple data sources, but it also informs the robot when it should leverage each type of information. Further, our approach accounts for the human’s ability to provide data: yielding user-friendly preference queries which are also theoretically optimal. Our extensive simulated experiments and user studies on a Fetch mobile manipulator demonstrate the superiority and the usability of our integrated framework..

A MPC-based (non-POMDP) approach to sequential decision planning with partial observability in continuous time and space

Nishimura H, Schwager M., SACBP: Belief space planning for continuous-time dynamical systems via stochastic sequential action control, . The International Journal of Robotics Research. 2021;40(10-11):1167-1195 DOI: 10.1177/02783649211037697.

We propose a novel belief space planning technique for continuous dynamics by viewing the belief system as a hybrid dynamical system with time-driven switching. Our approach is based on the perturbation theory of differential equations and extends sequential action control to stochastic dynamics. The resulting algorithm, which we name SACBP, does not require discretization of spaces or time and synthesizes control signals in near real-time. SACBP is an anytime algorithm that can handle general parametric Bayesian filters under certain assumptions. We demonstrate the effectiveness of our approach in an active sensing scenario and a model-based Bayesian reinforcement learning problem. In these challenging problems, we show that the algorithm significantly outperforms other existing solution techniques including approximate dynamic programming and local trajectory optimization.

Dropping laser scans for SLAM when they contribute with no relevant information

Kirill Krinkin, Anton Filatov, Correlation filter of 2D laser scans for indoor environment, . Robotics and Autonomous Systems, Volume 142, 2021 DOI: 10.1016/j.robot.2021.103809.

Modern laser SLAM (simultaneous localization and mapping) and structure from motion algorithms face the problem of processing redundant data. Even if a sensor does not move, it still continues to capture scans that should be processed. This paper presents the novel filter that allows dropping 2D scans that bring no new information to the system. Experiments on MIT and TUM datasets show that it is possible to drop more than half of the scans. Moreover the paper describes the formulas that enable filter adaptation to a particular robot with known speed and characteristics of lidar. In addition, the indoor corridor detector is introduced that also can be applied to any specific shape of a corridor and sensor.