Category Archives: Robotics

Interesting improvements in MC localization

Alireza Mohseni, Vincent Duchaine, Tony Wong, Improvement in Monte Carlo localization using information theory and statistical approaches, Engineering Applications of Artificial Intelligence, Volume 131, 2024 DOI: 10.1016/j.engappai.2024.107897.

Monte Carlo localization methods deploy a particle filter to resolve a hidden Markov process based on recursive Bayesian estimation, which approximates the internal states of a dynamic system given observation data. When the observed data are corrupted by outliers, the particle filter’s performance may deteriorate, preventing the algorithm from accurately computing dynamic system states such as a robot’s position, which in turn reduces the accuracy of the localization and navigation. In this paper, the notion of information entropy is used to identify outliers. Then, a probability-based approach is used to remove the discovered outliers. In addition, a new mutation process is added to the localization algorithm to exploit the posterior probability density function in order to actively detect the high-likelihood region. The goal of incorporating the mutation operator into this method is to solve the problem of algorithm impoverishment which is due to insufficient representation of the complete probability density function. Simulation experiments are used to confirm the effectiveness of the proposed techniques. They also are employed to predict the remaining viability of a lithium-ion battery. Furthermore, in an experimental study, the modified Monte Carlo localization algorithm was applied to a mobile robot to demonstrate the local planner’s improved accuracy. The test results indicate that developed techniques are capable of effectively capturing the dynamic behavior of a system and accurately tracking its characteristics.

Learning how to reset the episode in RL

S. -H. Lee and S. -W. Seo, Self-Supervised Curriculum Generation for Autonomous Reinforcement Learning Without Task-Specific Knowledge, IEEE Robotics and Automation Letters, vol. 9, no. 5, pp. 4043-4050, May 2024 DOI: 10.1109/LRA.2024.3375714.

A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode. This reset process demands substantial human intervention, making it difficult for the agent to learn continuously and autonomously. Several recent works have introduced autonomous reinforcement learning (ARL) algorithms that generate curricula for jointly training reset and forward policies. While their curricula can reduce the number of required manual resets by taking into account the agent’s learning progress, they rely on task-specific knowledge, such as predefined initial states or reset reward functions. In this paper, we propose a novel ARL algorithm that can generate a curriculum adaptive to the agent’s learning progress without task-specific knowledge. Our curriculum empowers the agent to autonomously reset to diverse and informative initial states. To achieve this, we introduce a success discriminator that estimates the success probability from each initial state when the agent follows the forward policy. The success discriminator is trained with relabeled transitions in a self-supervised manner. Our experimental results demonstrate that our ARL algorithm can generate an adaptive curriculum and enable the agent to efficiently bootstrap to solve sparse-reward maze navigation and manipulation tasks, outperforming baselines with significantly fewer manual resets.

Networked differential telerrobot remotely controlled in spite of disturbances and delays

Luca Nanu, Luigi Colangelo, Carlo Novara, Carlos Perez Montenegro, Embedded model control of networked control systems: An experimental robotic application, Mechatronics, Volume 99, 2024 DOI: 10.1016/j.mechatronics.2024.103160.

In Networked Control System (NCS), the absence of physical communication links in the loop leads to relevant issues, such as measurement delays and asynchronous execution of the control commands. In general, these issues may significantly compromise the performance of the NCS, possibly causing unstable behaviours. This paper presents an original approach to the design of a complete digital control unit for a system characterized by a varying sampling time and asynchronous command execution. The approach is based on the Embedded Model Control (EMC) methodology, whose key feature is the estimation of the disturbances, errors and nonlinearities affecting the plant to control and their online cancellation. In this way, measurement delays and execution asynchronicity are treated as errors and rejected up to a given frequency by the EMC unit. The effectiveness of the proposed approach is demonstrated in a real-world case-study, where the NCS consists of a differential-drive mobile robot (the plant) and a control unit, and the two subsystems communicate through the web without physical connection links. After a preliminary verification using a high-fidelity numerical simulator, the designed controller is validated in several experimental tests, carried out on a real-time embedded system incorporated in the robotic platform.

Improving EKF and UKF when diverse precision sensors are used for localization through adaptive covariances

Giseo Park, Optimal vehicle position estimation using adaptive unscented Kalman filter based on sensor fusion, Mechatronics, Volume 99, 2024 DOI: 10.1016/j.mechatronics.2024.103144.

Precise position recognition systems are actively used in various automotive technology fields such as autonomous vehicles, intelligent transportation systems, and vehicle driving safety systems. In line with this demand, this paper proposes a new vehicle position estimation algorithm based on sensor fusion between low-cost standalone global positioning system (GPS) and inertial measurement unit (IMU) sensors. In order to estimate accurate vehicle position information using two complementary sensor types, adaptive unscented Kalman filter (AUKF), an optimal state estimation algorithm, is applied to the vehicle kinematic model. Since this AUKF includes an adaptive covariance matrix whose value changes under GPS outage conditions, it has high estimation robustness even if the accuracy of the GPS measurement signal is low. Through comparison of estimation errors with both extended Kalman filter (EKF) and UKF, which are widely used state estimation algorithms, it can be confirmed how improved the estimation performance of the proposed AUKF algorithm in real-vehicle experiments is. The given test course includes roads of various shapes as well as GPS outage sections, so it is suitable for evaluating vehicle position estimation performance.

Graph NNs in RL for improving sample efficiency

Feng Zhang, Chengbin Xuan, Hak-Keung Lam, An obstacle avoidance-specific reinforcement learning method based on fuzzy attention mechanism and heterogeneous graph neural networks, Engineering Applications of Artificial Intelligence, Volume 130, 2024 DOI: 10.1016/j.engappai.2023.107764.

Deep reinforcement learning (RL) is an advancing learning tool to handle robotics control problems. However, it typically suffers from sample efficiency and effectiveness. The emergence of Graph Neural Networks (GNNs) enables the integration of the RL and graph representation learning techniques. It realises outstanding training performance and transfer capability by forming controlling scenarios into the corresponding graph domain. Nevertheless, the existing approaches strongly depend on the artificial graph formation processes with intensive bias and cannot propagate messages discriminatively on explicit physical dependence, which leads to restricted flexibility, size transfer capability and suboptimal performance. This paper proposes a fuzzy attention mechanism-based heterogeneous graph neural network (FAM-HGNN) framework for resolving the control problem under the RL context. FAM emphasises the significant connections and weakening of the trivial connections in a fully connected graph, which mitigates the potential negative influence caused by the artificial graph formation process. HGNN obtains a higher level of relational inductive bias by conducting graph propagations on a masked graph. Experimental results show that our FAM-HGNN outperforms the multi-layer perceptron-based and the existing GNN-based RL approaches regarding training performance and size transfer capability. We also conducted an ablation study and sensitivity analysis to validate the efficacy of the proposed method further.

A review of state-of-the-art path planning methods applied to autonomous driving

Mohamed Reda, Ahmed Onsy, Amira Y. Haikal, Ali Ghanbari, Path planning algorithms in the autonomous driving system: A comprehensive review, Robotics and Autonomous Systems, Volume 174, 2024 DOI: 10.1016/j.robot.2024.104630.

This comprehensive review focuses on the Autonomous Driving System (ADS), which aims to reduce human errors that are the reason for about 95% of car accidents. The ADS consists of six stages: sensors, perception, localization, assessment, path planning, and control. We explain the main state-of-the-art techniques used in each stage, analyzing 275 papers, with 162 specifically on path planning due to its complexity, NP-hard optimization nature, and pivotal role in ADS. This paper categorizes path planning techniques into three primary groups: traditional (graph-based, sampling-based, gradient-based, optimization-based, interpolation curve algorithms), machine and deep learning, and meta-heuristic optimization, detailing their advantages and drawbacks. Findings show that meta-heuristic optimization methods, representing 23% of our study, are preferred for being general problem solvers capable of handling complex problems. In addition, they have faster convergence and reduced risk of local minima. Machine and deep learning techniques, accounting for 25%, are favored for their learning capabilities and fast responses to known scenarios. The trend towards hybrid algorithms (27%) combines various methods, merging each algorithm’s benefits and overcoming the other’s drawbacks. Moreover, adaptive parameter tuning is crucial to enhance efficiency, applicability, and balancing the search capability. This review sheds light on the future of path planning in autonomous driving systems, helping to tackle current challenges and unlock the full capabilities of autonomous vehicles.

Integrating symbolic (common sense) reasoning and probabilistic planning (POMDPs) in robots

Shiqi Zhang, Piyush Khandelwal, Peter Stone, iCORPP: Interleaved commonsense reasoning and probabilistic planning on robots, Robotics and Autonomous Systems, Volume 174, 2024 DOI: 10.1016/j.robot.2023.104613.

Robot sequential decision-making in the real world is a challenge because it requires the robots to simultaneously reason about the current world state and dynamics, while planning actions to accomplish complex tasks. On the one hand, declarative languages and reasoning algorithms support representing and reasoning with commonsense knowledge. But these algorithms are not good at planning actions toward maximizing cumulative reward over a long, unspecified horizon. On the other hand, probabilistic planning frameworks, such as Markov decision processes (MDPs) and partially observable MDPs (POMDPs), support planning to achieve long-term goals under uncertainty. But they are ill-equipped to represent or reason about knowledge that is not directly related to actions. In this article, we present an algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers. In this process, robot decision-making problems are decomposed into two interdependent (smaller) subproblems that focus on reasoning to “understand the world” and planning to “achieve the goal” respectively. The developed algorithm has been implemented and evaluated both in simulation and on real robots using everyday service tasks, such as indoor navigation, and dialog management. Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines including handcrafted action policies.

Correcting systematic and non-systematic errors in odometry

Bibiana Fari�a, Jonay Toledo, Leopoldo Acosta, Improving odometric sensor performance by real-time error processing and variable covariance, Mechatronics, Volume 98, 2024 DOI: 10.1016/j.mechatronics.2023.103123.

This paper presents a new method to increase odometric sensor accuracy by systematic and non-systematic errors processing. Mobile robot localization is improved combining this technique with a filter that fuses the information from several sensors characterized by their covariance. The process focuses on calculating the odometric speed difference with respect to the filter to implement an error type detection module in real time. The correction of systematic errors consists in an online parameter adjustment using the previous information and conditioned by the filter accuracy. This data is also applied to design a variable odometric covariance which describes the sensor reliability and determines the influence of both errors on the robot localization. The method is implemented in a low-cost autonomous wheelchair with a LIDAR, IMU and encoders fused by an UKF algorithm. The experimental results prove that the estimated poses are closer to the real ones than using other well-known previous methods.

Survey on methods for learning from demonstration in robotics

M. Tavassoli, S. Katyara, M. Pozzi, N. Deshpande, D. G. Caldwell and D. Prattichizzo, Learning Skills From Demonstrations: A Trend From Motion Primitives to Experience Abstraction, IEEE Transactions on Cognitive and Developmental Systems, vol. 16, no. 1, pp. 57-74, Feb. 20248 DOI: 10.1109/TCDS.2023.3296166.

The uses of robots are changing from static environments in factories to encompass novel concepts such as human\u2013robot collaboration in unstructured settings. Preprogramming all the functionalities for robots becomes impractical, and hence, robots need to learn how to react to new events autonomously, just like humans. However, humans, unlike machines, are naturally skilled in responding to unexpected circumstances based on either experiences or observations. Hence, embedding such anthropoid behaviors into robots entails the development of neuro-cognitive models that emulate motor skills under a robot learning paradigm. Effective encoding of these skills is bound to the proper choice of tools and techniques. This survey paper studies different motion and behavior learning methods ranging from movement primitives (MPs) to experience abstraction (EA), applied to different robotic tasks. These methods are scrutinized and then experimentally benchmarked by reconstructing a standard pick-n-place task. Apart from providing a standard guideline for the selection of strategies and algorithms, this article aims to draw a perspective on their possible extensions and improvements.

Particle grid maps

G. Chen, W. Dong, P. Peng, J. Alonso-Mora and X. Zhu, Continuous Occupancy Mapping in Dynamic Environments Using Particles, IEEE Transactions on Robotics, vol. 40, pp. 64-84, 2024 DOI: 10.1109/TRO.2023.3323841.

Particle-based dynamic occupancy maps were proposed in recent years to model the obstacles in dynamic environments. Current particle-based maps describe the occupancy status in discrete grid form and suffer from the grid size problem, wherein a large grid size is unfavorable for motion planning while a small grid size lowers efficiency and causes gaps and inconsistencies. To tackle this problem, this article generalizes the particle-based map into continuous space and builds an efficient 3-D egocentric local map. A dual-structure subspace division paradigm, composed of a voxel subspace division and a novel pyramid-like subspace division, is proposed to propagate particles and update the map efficiently with the consideration of occlusions. The occupancy status at an arbitrary point in the map space can then be estimated with the weights of the particles. To reduce the noise in modeling static and dynamic obstacles simultaneously, an initial velocity estimation approach and a mixture model are utilized. Experimental results show that our map can effectively and efficiently model both dynamic obstacles and static obstacles. Compared to the state-of-the-art grid-form particle-based map, our map enables continuous occupancy estimation and substantially improves the mapping performance at different resolutions.