Author Archives: Juan-antonio Fernández-madrigal

Profiling the energy consumption of AGVs

J. Leng, J. Peng, J. Liu, Y. Zhang, J. Ji and Y. Zhang, rofiling Power Consumption in Low-Speed Autonomous Guided Vehicles, IEEE Robotics and Automation Letters, vol. 9, no. 7, pp. 6027-6034, July 2024 DOI: 10.1109/LRA.2024.3396051.

The increasing demand for automation has led to a rise in the use of low-speed Autonomous guided vehicles (AGVs). However, AGVs rely on batteries for their power source, which limits their operational time and affects their overall performance. To optimize their energy usage and enhance their battery life, it is crucial to understand the power consumption behavior of AGVs. This letter presents a comprehensive study on profiling power consumption in low-speed AGVs. The previous power consumption estimation models for AGVs were mostly based on physical formulas. We introduce a data-driven power consumption estimation model for each of the main components of the AGV, including the chassis, computing platform, sensors and communication devices. By conducting three actual driving tests, we show that the MAPE in estimating instantaneous power is 4.8%, a significant 8.1% improvement compared to using a physical model. Moreover, the MAPE for energy consumption is only 1.5%, which is 6.6% better than the physical model. To demonstrate the utility of our power consumption estimation models, we conduct two case studies – one is energy-efficient path planning and the other is energy-efficient perception task interval adjustment. This study demonstrates that integrating the power consumption estimation model into path planning reduces energy consumption by over 12%. Additionally, adjusting detection interval lowers computational energy consumption by 10.1%.

Thermodynamics as a way of identifying hierarchies

Morten L. Kringelbach, Yonatan Sanz Perl, Gustavo Deco, The Thermodynamics of Mind, Trends in Cognitive Sciences, Volume 28, Issue 6, 2024, Pages 568-581 DOI: 10.1016/j.tics.2024.03.009.

To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the ‘Thermodynamics of Mind’ framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.

Using fractal interpolation for time series prediction

Alexandra Băicoianu, Cristina Gabriela Gavrilă, Cristina Maria Păcurar, Victor Dan Păcurar, Fractal interpolation in the context of prediction accuracy optimization, Engineering Applications of Artificial Intelligence, Volume 133, Part D, 2024 DOI: 10.1016/j.engappai.2024.108380.

This paper focuses on the hypothesis of optimizing time series predictions using fractal interpolation techniques. In general, the accuracy of machine learning model predictions is closely related to the quality and quantitative aspects of the data used, following the principle of garbage-in, garbage-out. In order to quantitatively and qualitatively augment datasets, one of the most prevalent concerns of data scientists is to generate synthetic data, which should follow as closely as possible the actual pattern of the original data. This study proposes three different data augmentation strategies based on fractal interpolation, namely the Closest Hurst Strategy, Closest Values Strategy and Formula Strategy. To validate the strategies, we used four public datasets from the literature, as well as a private dataset obtained from meteorological records in the city of Braşov, Romania. The prediction results obtained with the LSTM model using the presented interpolation strategies showed a significant accuracy improvement compared to the raw datasets, thus providing a possible answer to practical problems in the field of remote sensing and sensor sensitivity. Moreover, our methodologies answer some optimization-related open questions for the fractal interpolation step using Optuna framework.

Change point detection through self-supervised learning

Xiangyu Bao, Liang Chen, Jingshu Zhong, Dianliang Wu, Yu Zheng, A self-supervised contrastive change point detection method for industrial time series, Engineering Applications of Artificial Intelligence, Volume 133, Part B, 2024, DOI: 10.1016/j.engappai.2024.108217.

Manufacturing process monitoring is crucial to ensure production quality. This paper formulates the detection problem of abnormal changes in the manufacturing process as the change point detection (CPD) problem for the industrial temporal data. The premise of known data property and sufficient data annotations in existing CPD methods limits their application in the complex manufacturing process. Therefore, a self-supervised and non-parametric CPD method based on temporal trend-seasonal feature decomposition and contrastive learning (CoCPD) is proposed. CoCPD aims to solve CPD problem in an online manner. By bringing the representations of time series segments with similar properties in the feature space closer, our model can sensitively distinguish the change points that do not conform to either historical data distribution or temporal continuity. The proposed CoCPD is validated by a real-world body-in-white production case and compared with 10 state-of-the-art CPD methods. Overall, CoCPD achieves promising results by Precision 70.6%, Recall 68.8%, and the mean absolute error (MAE) 8.27. With the ability to rival the best offline baselines, CoCPD outperforms online baseline methods with improvements in Precision, Recall and MAE by 14.90%, 11.93% and 43.93%, respectively. Experiment results demonstrate that CoCPD can detect abnormal changes timely and accurately.

See also: https://doi.org/10.1016/j.engappai.2024.108155

Reducing discovered skills in DRL to the essential ones, modelling skills with SMDP Q-learning

Shuai Qing, Fei Zhu, Refine to the essence: Less-redundant skill learning via diversity clustering, Engineering Applications of Artificial Intelligence, Volume 133, Part A, 2024 DOI: 10.1016/j.engappai.2024.107981.

In reinforcement learning, skill is a potentially conditional policy that solves tasks in a hierarchically controlled manner. Progress on skill discovery helps agents learn a set of diverse and useful skills without external supervision to tackle complex tasks with sparse rewards. Although most of the studies have aimed to maximize the diversity of skills discovered, the distinguishability between skills diminishes as the number of skills increases, leading to a subset of similar and redundant skills. To tackle this problem, a method called Refine to the Essence of Skills (RE-Skill) is proposed, which aims at learning skills with less redundancy. RE-Skill integrates the concepts of cluster analysis and policy distillation, clustering similar skills together based on their unique features, learning the most optimal performance within each cluster, and filtering out similar skills that involve excessive and intricate actions, thereby reducing redundancy among skills. By refining clusters of similar skills into less-redundant independent skills, RE-Skill demonstrates superior performance compared to other skill discovery algorithms and shows how these less-redundant skills effectively address downstream tasks, indicating that RE-Skill is able to extend its efficacy to engineering applications in robot control and obstacle training tasks within complex environments.

A survey on neurosymbolic RL and planning

K. Acharya, W. Raza, C. Dourado, A. Velasquez and H. H. Song, Neurosymbolic Reinforcement Learning and Planning: A Survey, IEEE Transactions on Artificial Intelligence, vol. 5, no. 5, pp. 1939-1953, May 2024 DOI: 10.1109/TAI.2023.3311428.

The area of neurosymbolic artificial intelligence (Neurosymbolic AI) is rapidly developing and has become a popular research topic, encompassing subfields, such as neurosymbolic deep learning and neurosymbolic reinforcement learning (Neurosymbolic RL). Compared with traditional learning methods, Neurosymbolic AI offers significant advantages by simplifying complexity and providing transparency and explainability. Reinforcement learning (RL), a long-standing artificial intelligence (AI) concept that mimics human behavior using rewards and punishment, is a fundamental component of Neurosymbolic RL, a recent integration of the two fields that has yielded promising results. The aim of this article is to contribute to the emerging field of Neurosymbolic RL by conducting a literature survey. Our evaluation focuses on the three components that constitute Neurosymbolic RL: neural, symbolic, and RL. We categorize works based on the role played by the neural and symbolic parts in RL, into three taxonomies: learning for reasoning, reasoning for learning, and learning–reasoning. These categories are further divided into subcategories based on their applications. Furthermore, we analyze the RL components of each research work, including the state space, action space, policy module, and RL algorithm. In addition, we identify research opportunities and challenges in various applications within this dynamic field.

Ultrasounds as an interface to read neuro-muscular signals

X. Yang, C. Castellini, D. Farina and H. Liu, Ultrasound as a Neurorobotic Interface: A Review, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 6, pp. 3534-3546, June 2024 DOI: 10.1109/TSMC.2024.3358960.

Neurorobotic devices, such as prostheses, exoskeletons, and muscle stimulators, can partly restore motor functions in individuals with disabilities, such as stroke, spinal cord injury (SCI), and amputations and musculoskeletal impairments. These devices require information transfer from and to the nervous system by neurorobotic interfaces. However, current interfacing systems have limitations of low-spatial and temporal resolution, and lack robustness, with sensitivity to, e.g., fatigue and sensor displacement. Muscle scanning and imaging by ultrasound technology has emerged as a neurorobotic interface alternative to more conventional electrophysiological recordings. While muscle ultrasound detects movement of muscle fibers, and therefore does not directly detect neural information, the muscle fibers are activated by neurons in the spinal cord and therefore their motions mirror the neural code sent from the spinal cord to muscles. In this view, muscle imaging by ultrasound provides information on the neural activation underlying movement intent and execution. Here, we critically review the literature on ultrasound applied as a neurorobotic interface, focusing on technological progresses and current achievements, machine learning algorithms, and applications in both upper- and lower- limb robotics. This critical review reveals that ultrasound in the human-machine interface field has evolved from bulky hardware to miniaturized systems, from multichannel imaging to sparse channel sensing, from simple muscle morphological analysis to input signal for musculoskeletal models and machine learning, from unimodal sensing to multimodal fusion, and from conventional statistical learning to deep learning. For future advances, we recommend exploring high-precision ultrasound imaging technology, improving the wearability and ergonomics of systems and transducers, and developing user-friendly real-time human-machine interaction models.

An alternative conceptual basis for curiosity / motivation

Francesco Poli, Jill X. O’Reilly, Rogier B. Mars, Sabine Hunnius, Curiosity and the dynamics of optimal exploration, Trends in Cognitive Sciences, Volume 28, Issue 5, 2024, DOI: 10.1016/j.tics.2024.02.001.

What drives our curiosity remains an elusive and hotly debated issue, with multiple hypotheses proposed but a cohesive account yet to be established. This review discusses traditional and emergent theories that frame curiosity as a desire to know and a drive to learn, respectively. We adopt a model-based approach that maps the temporal dynamics of various factors underlying curiosity-based exploration, such as uncertainty, information gain, and learning progress. In so doing, we identify the limitations of past theories and posit an integrated account that harnesses their strengths in describing curiosity as a tool for optimal environmental exploration. In our unified account, curiosity serves as a ‘common currency’ for exploration, which must be balanced with other drives such as safety and hunger to achieve efficient action.

A novel RL setting for non-Markovian systems

Ronen I. Brafman, Giuseppe De Giacomo, Regular decision processes, Artificial Intelligence, Volume 331, 2024 DOI: 10.1016/j.artint.2024.104113.

We introduce and study Regular Decision Processes (RDPs), a new, compact model for domains with non-Markovian dynamics and rewards, in which the dependence on the past is regular, in the language theoretic sense. RDPs are an intermediate model between MDPs and POMDPs. They generalize k-order MDPs and can be viewed as a POMDP in which the hidden state is a regular function of the entire history. In factored RDPs, transition and reward functions are specified using formulas in linear temporal logics over finite traces, or using regular expressions. This allows specifying complex dependence on the past using intuitive and compact formulas, and building models of partially observable domains without specifying an underlying state space.

The problem of incorporating novelties into the knowledge of an AI agent

Shivam Goel, Panagiotis Lymperopoulos, Ravenna Thielstrom, Evan Krause, Patrick Feeney, Pierrick Lorang, Sarah Schneider, Yichen Wei, Eric Kildebeck, Stephen Goss, Michael C. Hughes, Liping Liu, Jivko Sinapov, Matthias Scheutz, A neurosymbolic cognitive architecture framework for handling novelties in open worlds, Artificial Intelligence, Volume 331, 2024 DOI: 10.1016/j.artint.2024.104111.

“Open world” environments are those in which novel objects, agents, events, and more can appear and contradict previous understandings of the environment. This runs counter to the “closed world” assumption used in most AI research, where the environment is assumed to be fully understood and unchanging. The types of environments AI agents can be deployed in are limited by the inability to handle the novelties that occur in open world environments. This paper presents a novel cognitive architecture framework to handle open-world novelties. This framework combines symbolic planning, counterfactual reasoning, reinforcement learning, and deep computer vision to detect and accommodate novelties. We introduce general algorithms for exploring open worlds using inference and machine learning methodologies to facilitate novelty accommodation. The ability to detect and accommodate novelties allows agents built on this framework to successfully complete tasks despite a variety of novel changes to the world. Both the framework components and the entire system are evaluated in Minecraft-like simulated environments. Our results indicate that agents are able to efficiently complete tasks while accommodating “concealed novelties” not shared with the architecture development team.