Tag Archives: Reinforcement Learning

Partially observable reinforcement learning and the problem of representing the history of the learning process efficiently

Doshi-Velez, F.; Pfau, D.; Wood, F.; Roy, N., Bayesian Nonparametric Methods for Partially-Observable Reinforcement Learning, Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.37, no.2, pp.394,407, Feb. 2015, DOI: 10.1109/TPAMI.2013.191

Making intelligent decisions from incomplete information is critical in many applications: for example, robots must choose actions based on imperfect sensors, and speech-based interfaces must infer a user\u2019s needs from noisy microphone inputs. What makes these tasks hard is that often we do not have a natural representation with which to model the domain and use for choosing actions; we must learn about the domain\u2019s properties while simultaneously performing the task. Learning a representation also involves trade-offs between modeling the data that we have seen previously and being able to make predictions about new data. This article explores learning representations of stochastic systems using Bayesian nonparametric statistics. Bayesian nonparametric methods allow the sophistication of a representation to scale gracefully with the complexity in the data. Our main contribution is a careful empirical evaluation of how representations learned using Bayesian nonparametric methods compare to other standard learning approaches, especially in support of planning and control. We show that the Bayesian aspects of the methods result in achieving state-of-the-art performance in decision making with relatively few samples, while the nonparametric aspects often result in fewer computations. These results hold across a variety of different techniques for choosing actions given a representation.

Reinforcement learning for discovering the parameters of the physical model of a system

S.P. Nageshrao, G.A.D. Lopes, D. Jeltsema, R. Babuška, Passivity-based reinforcement learning control of a 2-DOF manipulator arm, Mechatronics, Volume 24, Issue 8, December 2014, Pages 1001-1007, ISSN 0957-4158, DOI: 10.1016/j.mechatronics.2014.10.005.

Passivity-based control (PBC) is commonly used for the stabilization of port-Hamiltonian (PH) systems. The PH framework is suitable for multi-domain systems, for example mechatronic devices or micro-electro-mechanical systems. Passivity-based control synthesis for PH systems involves solving partial differential equations, which can be cumbersome. Rather than explicitly solving these equations, in our approach the control law is parameterized and the unknown parameter vector is learned using an actor\u2013critic reinforcement learning algorithm. The key advantages of combining learning with PBC are: (i) the complexity of the control design procedure is reduced, (ii) prior knowledge about the system, given in the form of a PH model, speeds up the learning process, (iii) physical meaning can be attributed to the learned control law. In this paper we extended the learning-based PBC method to a regulation problem and present the experimental results for a two-degree-of-freedom manipulator. We show that the learning algorithm is capable of achieving feedback regulation in the presence of model uncertainties.

A reinforcement learning controller to tune sub-controllers

Kevin Van Vaerenbergh, Peter Vrancx, Yann-Michaël De Hauwere, Ann Nowé, Erik Hostens, Christophe Lauwerys, Tuning hydrostatic two-output drive-train controllers using reinforcement learning, Mechatronics, Volume 24, Issue 8, December 2014, Pages 975-985, ISSN 0957-4158. DOI: 10.1016/j.mechatronics.2014.07.005

When controlling a complex system consisting of several subsystems, a simple divide and conquer approach is to design a controller for each system separately. However, this does not necessarily result in a good overall control behavior. Especially when there are strong interactions between the subsystems, the selfish behavior of one controller might deteriorate the performance of the other subsystems. An alternative approach is to design a global controller for the entire mechatronic system. Such a design procedure might result in more optimal behavior, however it requires a lot more effort, especially when the interactions between the different subsystems cannot be modeled exactly or if the number of parameters is large.
In this paper we present a hybrid approach to this problem that overcomes the problems encountered when using several independent subsystems. Starting from such a system with individual subsystem controllers, we add a global layer which uses reinforcement learning to simultaneously tune the lower level controllers. While each subsystem still has its own individual controller, the reinforcement learning layer is used to tune these controllers in order to optimize global system behavior. This mitigates both the problem of subsystems behaving selfishly without the added complexity of designing a global controller for the entire system. Our approach is validated on a hydrostatic drive train.

A new variant of Q-learning that alleviates its slow learning speed (with a brief review of reinforcement learning algorithms)

J.C. van Rooijen, I. Grondman, R. Babuška, Learning rate free reinforcement learning for real-time motion control using a value-gradient based policy, Mechatronics, Volume 24, Issue 8, December 2014, Pages 966-974, ISSN 0957-4158. DOI: 10.1016/j.mechatronics.2014.05.007

Reinforcement learning (RL) is a framework that enables a controller to find an optimal control policy for a task in an unknown environment. Although RL has been successfully used to solve optimal control problems, learning is generally slow. The main causes are the inefficient use of information collected during interaction with the system and the inability to use prior knowledge on the system or the control task. In addition, the learning speed heavily depends on the learning rate parameter, which is difficult to tune.
In this paper, we present a sample-efficient, learning-rate-free version of the Value-Gradient Based Policy (VGBP) algorithm. The main difference between VGBP and other frequently used algorithms, such as Sarsa, is that in VGBP the learning agent has a direct access to the reward function, rather than just the immediate reward values. Furthermore, the agent learns a process model. This enables the algorithm to select control actions by optimizing over the right-hand side of the Bellman equation. We demonstrate the fast learning convergence in simulations and experiments with the underactuated pendulum swing-up task. In addition, we present experimental results for a more complex 2-DOF robotic manipulator.